Skip to main content
Log in

Spatial chaos on surface and its associated bifurcation and Feigenbaum problem

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The qualitative theory of nonlinear spatial dynamical systems has attracted increasing attention recently. In particular, we have studied construction of spatial periodic orbits, dynamical behaviors of spatial chaos in the sense of Li–Yorke–Marotto, spatial Lyapunov exponents, control and generalized synchronization of spatial chaotic systems. In this paper, we apply a special mathematical transform to obtain spatial chaos on surface and its associated bifurcation and Feigenbaum problem. The 2D Logistic system is used for illustration. In addition, we also illustrate the difference in essence about chaos on surface as high-dimensional spatial system and dimension in phase space and we also analyze the parallel and different characters of theory system between 1D and 2D Logistic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Winfree, A.T.: Scroll-shaped wave of chemical activity in three dimensions. Science 181, 937–939 (1973)

    Article  Google Scholar 

  2. May, R.M.: Simple mathematical models with very complex dynamics. Science 186, 645–647 (1974)

    Article  Google Scholar 

  3. Grebogi, C., Ott, E., Yorke, J.A.: Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science 238, 632–638 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Pool, R.: Putting chaos to work. Science 250, 626–628 (1990)

    Article  Google Scholar 

  5. Ottino, J.M., Muzzio, F.J., Tjahjadi, M., Franjione, J.G., Jana, S.C., Kusch, H.A.: Chaos, symmetry, and self-similarity: exploiting order and disorder in mixing processes. Science 257, 754–760 (1992)

    Article  Google Scholar 

  6. Henson, S.M., Costantino, R.F., Cushing, J.M., Desharnais, R.A., Dennis, B., King, A.A.: Lattice effects observed in chaotic dynamics of experimental populations. Science 294, 602–605 (2001)

    Article  Google Scholar 

  7. Otto, E.R., Klaus, W.: Chaos in the Zhabotinskii reaction. Nature 271, 89–90 (1978)

    Article  Google Scholar 

  8. Juckes, M.N., Mclntyre, M.E.: A high-resolution one-layer model of breaking planetary waves in the stratosphere. Nature 328, 590–596 (1987)

    Article  Google Scholar 

  9. Petrov, V., Gaspar, V., Masere, J., Showalter, K.: Controlling chaos in the Belousov–Zhabotinsky reaction. Nature 361, 240–246 (1993)

    Article  Google Scholar 

  10. Schiff, S.J., Jerger, K., Duong, D.H., Chang, T., Spano, M.L., Ditto, W.L.: Controlling chaos in the brain. Nature 370, 615–621 (1994)

    Article  Google Scholar 

  11. Paul, M.: Models for material failure and deformation. Science 252, 226–234 (1991)

    Article  Google Scholar 

  12. Bertram, E.S., Chua, L.O.: Resistive grid image filtering: input/output analysis via the CNN Framework. IEEE Trans. Circuits Syst. I 39, 531–548 (1999)

    Google Scholar 

  13. Li, X.P.: Partial difference equations used in the study of molecular orbits. Acta Chim. SINICA 40, 688–698 (1982)

    Google Scholar 

  14. Liu, S.T., Wang, H.: Necessary and sufficient conditions for oscillations of a class of delay partial difference equations. Dyn. Syst. Appl. 7, 495–500 (1998)

    MATH  Google Scholar 

  15. Liu, S.T., Guan, X.P., Yang, J.: Nonexistence of positive solution of a class of nonlinear delay partial difference equation. J. Math. Anal. Appl. 234, 361–371 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, S.T., Liu, Y.Q.: Oscillation theorems for second-order nonlinear partial difference equations. J. Comput. Appl. Math. 132, 479–482 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu, S.T., Liu, Y.Q.: Oscillation for nonlinear partial difference equation with positive and negative coefficients. Comput. Math. Appl. 43, 1219–1230 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chen, G., Liu, S.T.: On spatial periodic orbits and spatial chaos. Int. J. Bifurc. Chaos 13, 935–941 (2003)

    Article  MATH  Google Scholar 

  19. Hao, B.L.: Symbolic dynamics and chaos in dissipative systems. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  20. Kaneko, K.: Complex systems: chaos and beyond. Asakura Publishing Co., Ltd, Tokyo (1996)

    Google Scholar 

  21. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. He, R., Vaidya, P.G.: Analysis and synthesis of synchronous periodic and chaotic systems. Phys. Rev. E 46, 7387–7392 (1992)

    Article  MathSciNet  Google Scholar 

  23. Nikolai, F.R., Mikhai, M.S., Lev, S.T.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980–994 (1995)

    Article  Google Scholar 

  24. Parlitz, U., Junge, L., Kocarev, L.: Subharmonic entrainment of unstable period orbits and generalized synchronization. Phys. Rev. Lett. 79, 3158–3161 (1997)

    Article  Google Scholar 

  25. Brown, R., Kocarev, L.: A unifying definition of synchronization for dynamical systems. Chaos 10, 344–349 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Junge, L., Ulrich, P.: Synchronization using dynamic coupling. Phys. Rev. E 64, 2041–2044 (2001)

    Article  Google Scholar 

  27. Liu, S.T., Chen, G.: Asymptotic behavior of delay 2-D discrete logistic systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49, 1677–1682 (2002)

    Article  Google Scholar 

  28. Liu, S.T., Chen, G.: Nonlinear feedback-controlled generalized synchronization of spatial chaos. Chaos Solitons Fractals 22, 35–46 (2002)

    Article  MATH  Google Scholar 

  29. Liu, S.T., Chen, G.: On spatial Lyapunov exponents and spatial chaos. Int. J. Bifurc. Chaos 13, 1163–1181 (2003)

    Article  MATH  Google Scholar 

  30. Chen, G., Liu, S.T.: On generalized synchronization of spatial chaos. Chaos Solitons Fractals 15, 311–318 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Devaney, R.L.: A first course in chaotic dynamical systems: theory and experiment, pp. 39–93. Westview Press, New York (1992)

  32. Liu, S.T., Wu, S.T.: Uniformity of spatial physical motion systems and spatial chaos behavior in the sense of Li–York. Int. J. Bifurc. Chaos Appl. Sci. Eng. 16, 2697–2703 (2006)

    Article  MATH  Google Scholar 

  33. Liu, S.T.: Nuclear fission and spatial chaos. Chaos Solitons Fractals 30, 453–462 (2006)

    Article  Google Scholar 

  34. Liu, S.T., Wu, S.T.: Spacial chaos behavior of molecular orbit. Chaos Solitons Fractals 31, 1181–1186 (2007)

    Article  Google Scholar 

  35. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  36. Chen, G., Veta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)

    Article  MATH  Google Scholar 

  37. Lu, H., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002)

    Article  Google Scholar 

  38. Rossler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976)

    Article  Google Scholar 

  39. Russel, D.A., Hanson, J.D., Ott, E.: Dimension of strange attractors. Phys. Rev. Lett. 45, 1175 (1980)

    Article  MathSciNet  Google Scholar 

  40. Chen, A., Lu, J., Yu, S.: Generating hyperchaotic L\(\ddot{u}\) attractor via state feedback control. Phys. A 364, 103–110 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

Thank you for reviewer’s valuable suggestions. The work was supported by the Natural Science Foundation Project (Nos.31301080, 61273088 and 10971120), National Key Technology Support Program (No. 2015BAF13B00) and the Open Project of State Key Laboratory of Crop Biology (No. 2013KF10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, P., Liu, J. et al. Spatial chaos on surface and its associated bifurcation and Feigenbaum problem. Nonlinear Dyn 81, 283–298 (2015). https://doi.org/10.1007/s11071-015-1991-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1991-7

Keywords

Navigation