Skip to main content
Log in

On the attitude stabilization of a rigid spacecraft using two skew control moment gyros

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The attitude control of a rigid spacecraft with two skew single-gimbal control moment gyros (CMGs), which is subject to an underactuated nonholonomic constraint, is investigated. Nonlinear control theory is used to show that the combined dynamics of the spacecraft-CMG system are small-time locally controllable (STLC) from and feedback stabilizable to any equilibrium where two CMGs never encounter certain special configurations. Specially, the attitude stabilization issue is approached under the restriction that the total angular momentum of the spacecraft-CMG system is zero, which not only guarantees that the feasible equilibrium attitude can be any orientation but also renders STLC for these attitudes. In order to overcome the troublesome singular problem of two skew CMGs, a nonlinear approximation of the full attitude equations is derived for control law design by assuming that the spacecraft angular velocity is small. A novel singular quaternion stabilization law is then proposed to stabilize the spacecraft attitude with bounded angular velocities, which in turn ensures the satisfaction of the small angular velocity assumption during the entire control process. Numerical examples and experimental results validate the effectiveness of the proposed control method in stabilizing the full spacecraft-CMG system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Connor, B.J., Morine, L.A.: A description of the CMG and its application to space vehicle control. J. Spacecr. Rocket. 6(3), 225–231 (1969)

    Article  Google Scholar 

  2. Kusuda, Y., Takahashi, M.: Feedback control with nominal inputs for agile satellites using control moment gyros. J. Guid. Control Dyn. 34(4), 1209–1218 (2011). doi:10.2514/1.49410

    Article  Google Scholar 

  3. Hu, Q., Xiao, B.: Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness. Nonlinear Dyn. 64, 13–23 (2011). doi:10.1007/s11071-010-9842-z

    Article  MATH  MathSciNet  Google Scholar 

  4. Zhang, R., Qiao, J., Li, T., Guo, L.: Robust fault-tolerant control for flexible spacecraft against partial actuator failures. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1243-2

  5. Crouch, P.E.: Spacecraft attitude control and stabilization: application of geometric control theory to rigid body models. IEEE Trans. Autom. Control 29(4), 321–331 (1984). doi:10.1109/TAC.1984.1103519

    Article  MATH  Google Scholar 

  6. Byrnes, C.I., Isidori, A.: On the attitude stabilization of a rigid spacecraft. Automatica 27(1), 87–95 (1991). doi:10.1016/0005-1098(91)90008-P

    Article  MATH  MathSciNet  Google Scholar 

  7. Aeyels, D., Szafranski, M.: Comments on the stabilizability of the angular velocity of a rigid body. Syst. Control Lett. 10(1), 35–39 (1988). doi:10.1016/0167-6911(88)90037-0

    Article  MATH  Google Scholar 

  8. Andriano, V.: Global feedback stabilization of the angular velocity of a symmetric rigid body. Syst. Control Lett. 20(5), 361–364 (1993). doi:10.1016/0167-6911(93)90014-W

  9. Bajodah, A.H.: Asymptotic perturbed feedback linearization of underactuated Euler’s dynamics. Int. J. Control 82(10), 1856–1869 (2009). doi:10.1080/00207170902788613

    Article  MATH  MathSciNet  Google Scholar 

  10. Tsiotras, P., Longuski, J.M.: Spin-axis stabilization of symmetric spacecraft with two control torques. Syst. Control Lett. 23(6), 395–402 (1994). doi:10.1016/0167-6911(94)90093-0

    Article  MathSciNet  Google Scholar 

  11. Zhang, H., Wang, F., Trivailob, P.M.: Spin-axis stabilization of underactuated rigid spacecraft under sinusoidal disturbance. Int. J. Control 81(12), 1901–1909 (2009). doi:10.1080/00207170801930217

    Article  Google Scholar 

  12. Krishnan, H., Reyhanoglu, M., McClamroch, N.H.: Attitude stabilization of a rigid spacecraft using two control torques: a nonlinear control approach based on the spacecraft attitude dynamics. Automatica 30(6), 87–95 (1994). doi:10.1016/0005-1098(94)90196-1

    Article  MathSciNet  Google Scholar 

  13. Morin, P., Samson, C.: Time-varying exponential stabilization of a rigid spacecraft with two control torques. IEEE Trans. Autom. Control 42(4), 528–534 (1997). doi:10.1109/9.566663

    Article  MATH  MathSciNet  Google Scholar 

  14. Tsiotras, P., Corless, M., Longuski, J.M.: A novel approach to the attitude control of axisymmetric spacecraft. Automatica 31(8), 1099–1112 (1995). doi:10.1016/0005-1098(95)00010-T

    Article  MATH  MathSciNet  Google Scholar 

  15. Tsiotras, P., Luo, J.: Control of underactuated spacecraft with bounded inputs. Automatica 36(8), 1153–1169 (2000). doi:10.1016/S0005-1098(00)00025-X

    Article  MATH  MathSciNet  Google Scholar 

  16. Kim, S., Kim, Y.: Sliding mode stabilizing control law of underactuated spacecraft. In: Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Denver, USA, August, 2000, AIAA-2000-4045

  17. Casagrandea, D., Astolfi, A., Parisini, T.: Global asymptotic stabilization of the attitude and the angular rates of an underactuated non-symmetric rigid body. Automatica 44(7), 1781–1789 (2008). doi:10.1016/j.automatica.2007.11.022

  18. Teel, A.R., Sanfelice, R.G.: On robust, global stabilization of the attitude of an underactuated rigid body using hybrid feedback. In: Proceedings of the 2008 American Control Conference, Seattle, Washington, USA, June, 2008, pp. 2909–2914

  19. Krishnan, H., McClamroch, N.H., Reyhanoglu, M.: Attitude stabilization of a rigid spacecraft using two momentum wheel actuators. J. Guid. Control Dyn. 18(2), 256–263 (1995). doi:10.2514/3.21378

    Article  MATH  Google Scholar 

  20. Boyer, F., Alamir, M.: Further results on the controllability of a two-wheeled satellite. J. Guid. Control Dyn. 30(2), 611–619 (2007). doi:10.2514/1.21505

    Article  Google Scholar 

  21. Horri, N.M., Palmer, P.: Practical implementation of attitude-control algorithms for an underactuated satellite. J. Guid. Control Dyn. 35(1), 40–50 (2012). doi:10.2514/1.54075

    Article  Google Scholar 

  22. Gui, H., Jin, L., Xu, S.: Attitude maneuver control of a two-wheeled spacecraft with bounded wheel speeds. Acta Astronaut. 88, 98–107 (2013). doi:10.1016/j.actaastro.2013.03.006

    Article  Google Scholar 

  23. Marguiles, G., Aubrun, J.N.: Geometric theory of single gimbal control moment gyroscope systems. J. Astronaut. Sci. 26(2), 159–191 (1978)

    Google Scholar 

  24. Wie, B.: Singularity analysis and visualization for single-gimbal control moment gyro systems. J. Guid. Control Dyn. 27(2), 271–282 (2004). doi:10.2514/1.9167

    Article  MathSciNet  Google Scholar 

  25. Bedrossian, N.S., Paradiso, J., Bergmann, E.V., Rowell, D.: Redundant single gimbal control moment gyroscope singularity analysis. J. Guid. Control Dyn. 13(6), 1096–1101 (1990). doi:10.2514/3.20584

    Article  Google Scholar 

  26. Kurokawa, H.: Survey of theory and steering laws of single gimbal control moment gyros. J. Guid. Control Dyn. 30(5), 1331–1340 (2007). doi:10.2514/1.27316

    Article  MathSciNet  Google Scholar 

  27. Leve, F.A., Fitz-Coy, N.G.: Hybrid steering logic for single-gimbal control moment gyroscopes. J. Guid. Control Dyn. 33(4), 1202–1212 (2010). doi:10.2514/1.46853

    Article  Google Scholar 

  28. Bhat, S., Tiwari, P.: Controllability of spacecraft attitude using control moment gyroscopes. IEEE Trans. Autom. Control 54(3), 585–590 (2009). doi:10.1109/TAC.2008.2008324

    Article  MathSciNet  Google Scholar 

  29. Gui, H., Guan, H., Jin, L., Xu, S.: Analysis of small-time local controllability of spacecraft attitude using two control moment gyros. In: Proceeding of the 22nd AAS/AIAA Space Flight Mechanics Meeting, Charleston, SC, pp. 1047–1058 (2012)

  30. Kwon, S., Shimomura, T., Okubo, H.: Pointing control of spacecraft using two SGCMGs via LPV control theory. Acta Astronaut. 68(7–8), 1168–1175 (2011). doi:10.1016/j.actaastro.2010.10.001

    Article  Google Scholar 

  31. Yamada, K., Jikuya, I., Kwak, O.: Rate damping of a spacecraft using two single-gimbal control moment gyros. J. Guid. Control Dyn. 36(6), 1606–1623 (2013). doi:10.2514/1.60693

    Article  Google Scholar 

  32. Han, C., Pechev, A.: Underactuated satellite attitude control with two parallel CMGs. In: Proceedins of the IEEE International Conference Control and Automation, Guangzhou, China, June, 2007, pp. 666–670

  33. Jin, L., Xu, S.: Underactuated spacecraft angular velocity stabilization and three-axis attitude stabilization using two single gimbal control moment gyros. Acta. Mech. Sin. 26(2), 279–288 (2010). doi:10.1007/s10409-009-0272-4

    Article  MATH  MathSciNet  Google Scholar 

  34. Kasai, S., Kojima, H., Satoh, M.: Spacecraft attitude maneuver using two single-gimbal control moment gyros. Acta Astronaut. 84, 88–89 (2013). doi:10.1016/j.actaastro.2012.07035

    Article  Google Scholar 

  35. Gui, H., Jin, L., Xu, S.: Maneuver planning of a rigid spacecraft with two skew control moment gyros. Acta Astronaut. 104(1), 293–303 (2014). doi:10.1016/j.actaastro.2014.08.010

  36. Gui, H., Jin, L., Xu, S., Hu, Q.: Attitude stabilization of a spacecraft by two skew single-gimbal control moment gyros. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Boston, Massachusetts, USA, 2013, AIAA 2013–4794

  37. Bajodah, A.H., Hodges, D.H., Chen, Y.H.: Inverse dynamics of servo-constraints based on the generalized inverse. Nonlinear Dyn. 39(1–2), 179–196 (2005). doi:10.1007/S11071-005-1925-X

  38. Bajodah, A.H.: Singularly perturbed feedback linearization with linear attitude deviation dynamics realization. Nonlinear Dyn. 53(4), 321–343 (2008). doi:10.1007/s11071-007-9316-0

    Article  MATH  MathSciNet  Google Scholar 

  39. Basto-Gonçalves, J.: Second-order conditions for local controllability. Syst. Control Lett. 35(5), 287–290 (1998). doi:10.1016/S0167-6911(98)00067-X

  40. Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Millman, R.S., Sussmann, H.J. (eds.) Differential Geometric Control Theory, pp. 181–191. Birkhäuser, Boston (1983)

    Google Scholar 

  41. Stefani, G.: A sufficient condition for extremality. In: Analysis and Opimizations of Systems, Lecture Notes in Control and Information Sciences. Springer, Berlin, Vol. 111, pp. 270–281 (1988)

  42. Sussman, H.J.: Subanalytic sets and feedback control. J. Differ. Equ. 31(1), 31–52 (1979). doi:10.1016/0022-0396(79)90151-7

    Article  Google Scholar 

  43. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Xiaogang Mou for his help in preparing the experimental validation of the proposed algorithm. The present work was supported in part by the National Natural Science Foundation of China (No. 11272028) and by the Innovation Foundation of the National Laboratory of Space Intelligent Control.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haichao Gui.

Appendix: Proof of Claim 1

Appendix: Proof of Claim 1

Proof

We first show that \(\bar{{\varvec{q}}}(t)\) will enter the region \(\left| \Delta \right| \le m_\Delta \) in finite time. Assuming \(\left| \Delta \right| >m_\Delta \) for all \(t\ge 0\), Eqs. (5557) indicate that \(\lim _{t\rightarrow \infty } y(t)=\infty \) and hence \(\lim _{t\rightarrow \infty } \rho (t)=\infty \) since \(m>2/3\) and \(mg-k>0\). This leads to a contradiction, since \(\rho (t)\le 1\) for all \(t\ge 0\). Therefore, \(\bar{{\varvec{q}}}(t)\) leaves the region \(\left| \Delta \right| >m_\Delta \) and enters the region \(\left| \Delta \right| \le m_\Delta \) in finite time.

According to the preceding analysis, let us assume \(\left| \Delta \right| \le m_\Delta \). The time derivative of \(\Delta ^{2}\) along the closed-loop trajectories is

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t}\Delta ^{2}=-\frac{1}{\rho }\left( {\rho \left| \Delta \right| G\left( {\left| \Delta \right| } \right) +F_1 +F_2 } \right) \end{aligned}$$
(64)

where the function \(G(\cdot )\) is given in (40) and

$$\begin{aligned} F_1&= (q_2 q_3 +(q_0 q_1 +q_2 q_3 )\Delta ^{2})\omega _{e1} (t)\end{aligned}$$
(65)
$$\begin{aligned} F_2&= (-q_1 q_3 +(q_0 q_2 -q_1 q_3 )\Delta ^{2})\omega _{e2} (t) \end{aligned}$$
(66)

Noting that \(m_\Delta >2/3\) according to Proposition 2, it follows from the analysis in the proof of Proposition 1 that \(G(m_\Delta )>0\). Hence, one can further deduce that

$$\begin{aligned} \mathop {\lim }\limits _{\left| \Delta \right| \rightarrow m_\Delta } \rho \left| \Delta \right| G\left( {\left| \Delta \right| } \right) =\rho m_\Delta G\left( {m_\Delta } \right) >0 \end{aligned}$$
(67)

In addition, the time derivative of \(q_3^2 \) satisfies

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t}q_3^2&= -g\rho \Delta \tanh (\Delta )-q_2 q_3 \omega _{e1} (t)+q_1 q_3 \omega _{e2} (t) \nonumber \\&\ge -gq_3^2 -q_2 q_3 \omega _{e1} (t)+q_1 q_3 \omega _{e2} (t) \end{aligned}$$
(68)

It follows from (53), (54a), and (68) that \(\omega _{e1}\) and \(\omega _{e2}\) are decaying faster than \(q_3^2 \). Noting that in the region \(\left| \Delta \right| \le m_\Delta \) we have \(\rho >m_\Delta ^{-2} q_3^2 \), then \(\omega _{e1}\) and \(\omega _{e2}\) are also decaying faster than \(\rho \) and, therefore, it follows from (6467) that there exist some \(t_2 >0\) such that \(\lim _{\left| \Delta \right| \rightarrow m_\Delta } {\hbox {d}\Delta ^{2}}/{\hbox {d}t}<0\) for all \(t\ge t_2 \). This means that the vector field of the closed-loop system on the boundary \(\left| \Delta \right| =m_\Delta \) points into the interior of the region \(\left| \Delta \right| \le m_\Delta \). Therefore, \(\bar{{\varvec{q}}}(t)\) will stay in the region \(\left| \Delta \right| \le m_\Delta \) for all \(t\ge t_2 \) and thus \(\lim _{t\rightarrow \infty } {\omega _{ei} (t)}/\rho (t)=0, i=1,2\).

On the other hand, it follows from (43) and (64) and \(\lim _{t\rightarrow \infty } {\omega _{ei} (t)}/\rho (t)=0, i=1,2\), that

$$\begin{aligned} \mathop {\lim }\limits _{t\rightarrow \infty } \left( {\frac{\hbox {d}}{\hbox {d}t}\Delta ^{2}} \right) =-\left| \Delta \right| G\left( {\left| \Delta \right| } \right) \le -(g-kq_0 )\Delta ^{2}\nonumber \\ \end{aligned}$$
(69)

which implies that \(\lim _{t\rightarrow \infty } \Delta (t)=0\). Letting \(m_\Delta =1\) and using (50), we can further deduce that

$$\begin{aligned} \mathop {\lim }\limits _{t\rightarrow \infty } \left( {\frac{\hbox {d}}{\hbox {d}t}\frac{\Delta ^{2}}{\sqrt{\rho }}} \right)&= -\frac{1}{2\sqrt{\rho }}\left( 2\left| \Delta \right| G\right. \nonumber \\&\quad \left. +\Delta ^{2}(-kq_0 +g\Delta \tanh (\Delta )) \right) \nonumber \\&\le -\frac{(2g-3kq_0 )}{2}\frac{\Delta ^{2}}{\sqrt{\rho }} \end{aligned}$$
(70)

which means \(\lim _{t\rightarrow \infty } {\Delta ^{2}(t)}/{\sqrt{\rho (t)}}=0\) since \(g\ge {3k}/2>0\). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, H., Jin, L., Xu, S. et al. On the attitude stabilization of a rigid spacecraft using two skew control moment gyros. Nonlinear Dyn 79, 2079–2097 (2015). https://doi.org/10.1007/s11071-014-1796-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1796-0

Keywords

Navigation