Skip to main content

Advertisement

Log in

Optimal distribution of the actuating torques for a redundantly actuated masticatory robot with two higher kinematic pairs

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Optimal distribution of the actuating torques for a masticatory robot, which is in the form of a redundantly actuated parallel mechanism with two point-contact higher kinematic pairs (HKPs), is investigated in this paper. First, the mechanism of the robot is described, in which the two HKPs are used to model the temporomandibular joints between the condyles and the maxilla in the human masticatory system, and the six kinematic chains are used to model the six groups of the muscles of mastication. Then the inverse dynamics is studied using the Lagrange’s equations of the first type, resulting in the closed-form solution for the actuating torques. Considering the infinite solutions of the inverse dynamics for the actuating torque distribution in the redundantly actuated parallel robot, six optimal criteria that signify the practical performance of the robot are proposed. Finally, two simulations without and with bite force exerting to the teeth, respectively, given that the robot is specified to track a real human mandibular movement are conducted. Results are discussed and it is found that the dynamic performance of the robot varies significantly from one optimal criterion to another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Xu, W.L., Bronlund, J.E., Potgieter, J., Foster, K.D., Rhrle, O., Pullan, A.J., Kieser, J.A.: Review of the human masticatory system and masticatory robotics. Mech. Mach. Theory 43(11), 1353–1375 (2008)

    Article  MATH  Google Scholar 

  2. Lucas, P.W., Lucas, P.W.: The Basic Structure of the Mammalian Mouth Dental Functional Morphology. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  3. Hannam, A.G., McMillan, A.S.: Internal organization in the human jaw muscles. Crit. Rev. Oral. Biol. Med. 5(1), 55–89 (1994)

    Google Scholar 

  4. Koolstra, J.H., van Eijden, T.M.G.J.: Three-dimensional dynamical capabilities of the human masticatory muscles. J. Biomech. 32(2), 145–152 (1999)

    Article  Google Scholar 

  5. Takanobu, H., Takanishi, A., Ozawa, D., Ohtsuki, K., Ohnishi, M., Okino, A.: Integrated dental robot system for mouth opening and closing training. In: IEEE International Conference on Robotics and Automation, , pp. 1428–1433. Washington (2002)

  6. Takanobu, H., Yajima, T., Nakazawa, M., Takanishi, A., Ohtsuki, K., Ohnishi, M.: Quantification of masticatory efficiency with a mastication robot. In: IEEE International Conference on Robotics and Automation, pp. 1635–1640. Leuven, Belgium (1998)

  7. Sun, C., Xu, W.L., Bronlund, J.E., Morgenstern, M.: Dynamics and compliance control of a linkage robot for food chewing. IEEE Tran. Ind. Electron. 61(1), 377–386 (2014)

    Article  Google Scholar 

  8. Xu, W.L., Torrance, J.D., Chen, B.Q., Potgieter, J., Bronlund, J.E., Pap, J.S.: Kinematics and experiments of a life-sized masticatory robot for characterizing food texture. IEEE Trans. Ind. Electron. 55(5), 2121–2132 (2008)

    Article  Google Scholar 

  9. Takanobu, H., Maruyama, T., Takanishi, A., Ohtsuki, K., Ohnishi, M.: Mouth opening and closing training with 6-DOF parallel robot. In: IEEE International Conference on Robotics and Automation, pp. 1384–1389. San Francisco (2000)

  10. Hayashi, T., Kato, S., Yamada, S., Nakajima, S., Yamada, Y., Kobayashi, H.: A physiological control of chewing-like jaw movement for robotized jaw simulator JSN/2A. In: Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 730–731. Chicago (2000)

  11. Zhao, Y.-S., Ren, J.-Y., Huang, Z.: Dynamic loads coordination for multiple cooperating robot manipulators. Mech. Mach. Theory 35(7), 985–995 (2000)

    Article  MATH  Google Scholar 

  12. Müller, A., Maisser, P.: Generation and application of prestress in redundantly full-actuated parallel manipulators. Multibody Syst. Dyn. 18(2), 259–275 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhao, Y., Gao, F., Li, W., Liu, W., Zhao, X.: Development of 6-dof parallel seismic simulator with novel redundant actuation. Mechatronics 19(3), 422–427 (2009)

    Article  Google Scholar 

  14. Abedinnasab, M., Vossoughi, G.R.: Analysis of a 6-DOF redundantly actuated 4-legged parallel mechanism. Nonlinear Dyn. 58(4), 611–622 (2009)

    Article  MATH  Google Scholar 

  15. Shang, W., Cong, S.: Nonlinear adaptive task space control for a 2-DOF redundantly actuated parallel manipulator. Nonlinear Dyn. 59(1–2), 61–72 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shang, W.-W., Cong, S., Ge, Y.: Adaptive computed torque control for a parallel manipulator with redundant actuation. Robotica 30(3), 457–466 (2012)

    Article  Google Scholar 

  17. Shiqing, F., Franitza, D., Torlo, M., Bekes, F., Hiller, M.: Motion control of a tendon-based parallel manipulator using optimal tension distribution. IEEE/ASME Trans. Mechatron. 9(3), 561–568 (2004)

    Article  Google Scholar 

  18. Nokleby, S.B., Fisher, R., Podhorodeski, R.P., Firmani, F.: Force capabilities of redundantly-actuated parallel manipulators. Mech. Mach. Theory 40(5), 578–599 (2005)

    Article  MATH  Google Scholar 

  19. Zheng, Y.F., Luh, J.Y.S.: Optimal load distribution for two industrial robots handling a single object. In: IEEE International Conference on Robotics and Automation, pp. 344–349. Philadelphia (1988)

  20. Nahon, M.A., Angeles, J.: Force optimization in redundantly-actuated closed kinematic chains. In: IEEE International Conference on Robotics and Automation, pp. 951–956. Scottsdale (1989)

  21. Liu, J., Li, Y., Zhang, Y., Gao, Q., Zuo, B.: Dynamics and control of a parallel mechanism for active vibration isolation in space station. Nonlinear Dyn. 76(3), 1737–1751 (2014)

    Article  MathSciNet  Google Scholar 

  22. Mesnard, M., Coutant, J.C., Aoun, M., Morlier, J., Cid, M., Caix, P.: Relationships between geometry and kinematic characteristics in the temporomandibular joint. Comput. Methods Biomech. Biomed. Eng. 15(4), 393–400 (2011)

  23. Siegler, S., Hayes, R., Nicolella, D., Fielding, A.: A technique to investigate the three-dimensional kinesiology of the human temporomandibular joint. J. Prosthet. Dent. 65(6), 833–839 (1991)

    Article  Google Scholar 

  24. Tsai, L.-W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)

    Google Scholar 

  25. Shang, W.-W., Cong, S.: Motion control of parallel manipulators using acceleration feedback. IEEE Trans. Control Syst. Technol. 22(1), 314–321 (2014)

    Article  Google Scholar 

  26. Xu, W., Bronlund, J.E.: Mastication Robots. Springer, Berlin (2010)

    Book  Google Scholar 

Download references

Acknowledgments

The first author sincerely acknowledges the financial support of the Doctoral Scholarship from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Xu, W. & Shang, J. Optimal distribution of the actuating torques for a redundantly actuated masticatory robot with two higher kinematic pairs. Nonlinear Dyn 79, 1235–1255 (2015). https://doi.org/10.1007/s11071-014-1739-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1739-9

Keywords

Navigation