Skip to main content
Log in

Phase transitions in the two-lane density difference lattice hydrodynamic model of traffic flow

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we derive the KdV equation from the two-lane lattice hydrodynamic traffic model considering density difference effect. The soliton solution is obtained from the KdV equation. Under periodical boundary, the KdV soliton of traffic flow is demonstrated by numerical simulation. The numerical simulation result is consistent with the nonlinear analytical result. Under open system, the density fluctuation of the downstream last one lattice is designed to explore the empirical congested traffic states. A phase diagram is presented which includes free traffic, moving localized cluster, triggered stop-and-go traffic, oscillating congested traffic, and homogeneous congested traffic. Finally, the spatiotemporal evolution of all the traffic states described in phase diagram are reproduced. Results suggest that the two-lane density difference hydrodynamic traffic model is suitable to describe the actual traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Helbing, D., Treiber, M.: Gas-kinetic-based traffic model explaining observed hysteretic phase transition. Phys. Rev. Lett. 81, 3042–3045 (1998)

    Article  Google Scholar 

  2. Helbing, D., Treiber, M.: Numerical simulation of macroscopic traffic equations. Comput. Sci. Eng. 1, 89–98 (1999)

    Article  Google Scholar 

  3. Helbing, D., Treiber, M., Kesting, A., Schonhof, M.: Theoretical vs. empirical classification and prediction of congested traffic states. Eur. Phys. J. B 69, 583–598 (2009)

    Article  Google Scholar 

  4. Lee, H.Y., Lee, H.W., Kim, D.: Dynamic states of a continuum traffic equation with on-ramp. Phys. Rev. E 59, 5101–5111 (1999)

    Google Scholar 

  5. Chou, M.C., Huang, D.W.: Standing localized cluster in a continuum traffic model. Phys. Rev. E 63, 056106 (2001)

    Article  Google Scholar 

  6. Huang, D.W.: Highway on-ramp control. Phys. Rev. E 65, 046103 (2002)

    Article  Google Scholar 

  7. Gupta, A.K., Katiyar, V.K.: Phase transition of traffic states with on-ramp. Physica A 371, 674–682 (2006)

    Article  Google Scholar 

  8. Tang, C.F., Jiang, R., Wu, Q.S.: Phase diagram of speed gradient model with an on-ramp. Physica A 377, 641–650 (2007)

    Article  Google Scholar 

  9. Tang, T.Q., Huang, H.J., Shang, H.Y.: Effects of the number of on-ramps on the ring traffic flow. Chin. Phys. B 19(5), 050517 (2010)

    Article  Google Scholar 

  10. Gupta, A.K., Sharma, S.: Analysis of the wave properties of a new two-lane continuum model with the coupling effect. Chin. Phys. B 21, 015201 (2012)

    Article  Google Scholar 

  11. Tang, T.Q., Li, C.Y., Huang, H.J., Shang, H.Y.: A new fundamental diagram theory with the individual difference of the driver’s perception ability. Nonlinear Dyn. 67, 2255–2265 (2012)

    Article  Google Scholar 

  12. Berg, P., Woods, A.: On-ramp simulations and solitary waves of a car-following model. Phys. Rev. E 64, 035602 (2001)

    Article  Google Scholar 

  13. Jiang, R., Wu, Q.S., Wang, B.H.: Cellular automata model simulating traffic interactions between on-ramp and main road. Phys. Rev. E 66, 036104 (2002)

    Article  Google Scholar 

  14. Jiang, R., Wu, Q.S.: Phase transition at an on-ramp in the Nagel–Schreckenberg traffic flow model. Physica A 366, 523–529 (2006)

    Article  Google Scholar 

  15. Tang, T.Q., Shi, Y.F., Wang, Y.P., Yu, G.Z.: A bus-following model with an on-line bus station. Nonlinear Dyn. 70, 209–215 (2012)

    Article  Google Scholar 

  16. Tang, T.Q., Wang, Y.P., Yang, X.B., Wu, Y.H.: A new carfollowing model accounting for varying road condition. Nonlinear Dyn. 70, 1397–1405 (2012)

    Article  MathSciNet  Google Scholar 

  17. Nagatani, T.: Traffic jams induced by fluctuation of a leading car. Phys. Rev. E 61, 3534–3540 (2000)

    Article  Google Scholar 

  18. Tian, J.F., Yuan, Z.Z., Jia, B., Fan, H.Q.: phase transitions and the Korteweg-de Vries equation in the density difference lattice hydrodynamic model of traffic flow. Int. J. Mod. Phys. C 24, 50016 (2013)

    Article  MathSciNet  Google Scholar 

  19. Nagatani, T.: Modified KdV equation for jamming transition in the continuum models of traffic. Physica A 261, 599–607 (1998)

    Article  MathSciNet  Google Scholar 

  20. Nagatani, T.: TDGL and MKdV equations for jamming transition in the lattice models of traffic. Physica A 264, 581–592 (1999)

    Article  Google Scholar 

  21. Xue, Y.: Lattice models of the optimal traffic current. Acta Phys. Sin. 53, 25–30 (2004)

    Google Scholar 

  22. Ge, H.X., Dai, S.Q., Xue, Y., Dong, L.Y.: Stabilization analysis and modified Korteweg-de Vries equation in a cooperative driving system. Phys. Rev. E 71, 066119 (2005)

    Article  MathSciNet  Google Scholar 

  23. Ge, H.X., Cheng, R.J.: The ”backward looking” effect in the lattice hydrodynamic model. Physica A 387, 6952–6958 (2008)

    Article  Google Scholar 

  24. Zhu, W.X., Chi, E.X.: Analysis of generalized optimal current lattice model for traffic flow. Int. J. Mod. Phys. C 19, 727–739 (2008)

    Google Scholar 

  25. Zhu, W.X.: A backward looking optimal current lattice model. Commun. Theor. Phy. 50, 753–756 (2008)

    Article  Google Scholar 

  26. Tian, J.F., Yuan, Z.Z., Jia, B., et al.: The stabilization effect of the density difference in the modified lattice hydrodynamic model of traffic flow. Physica A 391, 4476–4482 (2012)

    Article  Google Scholar 

  27. Wang, T., Gao, Z.Y., Zhang, J., Zhao, X.M.: A new lattice hydrodynamic model for two-lane traffic with the consideratino of density difference effect. Nonlinear Dyn. 75, 27–34 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  28. Peng, G.H., Cai, X.H., Liu, C.Q., Tuo, M.X.: A new lattice model of traffic flow with the consideration of the driver’s forecast effects. Phys. Lett. A 375, 2153–2157 (2011)

    Article  MATH  Google Scholar 

  29. Peng, G.H., Cai, X.H., Liu, C.Q., Tuo, M.X.: A new lattice model of traffic flow with the anticipation effect of potential lane changing. Phys. Lett. A 376, 447–451 (2011)

    Article  Google Scholar 

  30. Peng, G.H., Nie, Y.F., Cao, B.F., Liu, C.Q.: A driver’s memory lattice model of traffic flow and its numerical simulation. Nonlinear Dyn. 67, 1811–1815 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Peng, G.H.: A new lattice model of traffic flow with the consideration of individual difference of anticipation driving behavior. Commun. Nonlinear Sci. Numer. Simul. 18, 2801–2806 (2013)

    Google Scholar 

  32. Peng, G.H.: A new lattice model of two-lane traffic flow with the consideration of optimal current difference. Commun. Nonlinear Sci. Numer. Simul. 18, 559–566 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Peng, G.H.: A new lattice model of the traffic flow with the consideration of the driver anticipation effect in a two-lane system. Nonlinear Dyn. 73, 1035–1043 (2013)

    Article  MATH  Google Scholar 

  34. Nagatani, T.: Jamming transitions and the modified Korteweg-de Vries equation in a two-lane traffic flow. Physica A 265, 297–310 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Basic Research Program of China (Grant No. 2012CB725401), the National Natural Science Foundation of China (Grant Nos. 71171124, 61340038), the China Postdoctoral Science Foundation (Grant No. 2013M540851), the Natural Science Foundation of Shandong Province (Grant Nos. ZR2013GQ001, 2013ZRB01254) and the Shandong Excellent Young Scientist Research Award Fund Project of China (Grant No. BS2012SF005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyou Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Gao, Z., Zhang, W. et al. Phase transitions in the two-lane density difference lattice hydrodynamic model of traffic flow. Nonlinear Dyn 77, 635–642 (2014). https://doi.org/10.1007/s11071-014-1325-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1325-1

Keywords

Navigation