Skip to main content
Log in

Chaos disappearance in a piecewise linear Bonhoeffer–van der Pol dynamics with a bistability of stable focus and stable relaxation oscillation under weak periodic perturbation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study elucidates the bifurcation structure causing chaos disappearance in a four-segment piecewise linear Bonhoeffer–van der Pol oscillator with a diode under a weak periodic perturbation. The parameter values of this oscillator are chosen such that stable focus and stable relaxation oscillation can coexist in close proximity in the phase plane if no perturbation is applied. Chaos disappearance occurs through a previously unreported novel and unconventional bifurcation mechanism. To rigorously analyze these phenomena, the diode in this oscillator is assumed to operate as a switch. In this case, the governing equation is represented as a constraint equation, and the Poincaré map is constructed as an one-dimensional map. By analyzing the Poincaré map, we clearly demonstrate why the stable relaxation oscillation that exists when no perturbation is applied disappears via chaotic oscillation when an extremely weak perturbation is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. McKean, H.P.: Nagumo’s equation. Adv. Math. 4, 209–223 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  2. Braaksma, B., Grasman, J.: Critical dynamics of the Bonhoeffer–van der Pol equation and its chaotic response to periodic stimulation. Physica D 68, 265–280 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Rajasekar, S., Parthasarathy, S., Lakshmanan, M. Prediction of horseshoe chaos in BVP and DVP oscillators. Chaos Solitons Fractals 2.3, 271–280 (1992)

    Google Scholar 

  4. Rabinovitch, A., Rogachevskii, I.: Threshold, excitability and isochrones in the Bonhoeffer-van der Pol system. Chaos 9, 880–886 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Rabinovitch, A., Thieberger, R., Friedman, M., Goshen, S.: Resonance effects in the Bonhoeffer–van der Pol system. Chaos Solitons Fractals 7, 1713–1719 (1996)

    Google Scholar 

  6. Rajasekar, S., Lakshmanan, M.: Period doubling route to chaos for a BVP oscillator with periodic external force. J. Theor. Biol. 133, 473–477 (1988)

    Article  MathSciNet  Google Scholar 

  7. Itoh, M., Tomiyasu, R.: Experimental study of the missing solutions “Canards”. IEICE Trans. E73, 848–854 (1990)

    Google Scholar 

  8. Wang, J., Feng, G.: Bifurcation and chaos in discrete-time BVP oscillator. Int. J. Non-Linear Mech. 45, 608–620 (2010)

    Article  Google Scholar 

  9. Shimizu, K., Sekikawa, M., Inaba, N.: Mixed-mode oscillations and chaos from a simple second-order oscillator under weak periodic perturbation. Phys. Lett. A 375, 1566–1569 (2011)

    Article  MATH  Google Scholar 

  10. Sekikawa, M., Shimizu, K., Inaba, N., Kita, H., Endo, T., Fujimoto, K., Yoshinaga, T., Aihara, K.: Sudden change from chaos to oscillation death in the Bonhoeffer–van der Pol oscillator under weak periodic perturbation. Phys. Rev. E 84, 056209 (2011)

    Article  Google Scholar 

  11. Shimizu, K., Saito, Y., Sekikawa, M., Inaba, N.: Complex mixed-mode oscillations in a Bonhoeffer–van der Pol oscillator under weak periodic perturbation. Physica D 241, 1518–1526 (2012)

    Article  MATH  Google Scholar 

  12. Matsumoto, T., Chua, L.O., Komuro, M.: The double scroll. IEEE Trans. Circuits Syst. 32, 797–818 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Barnes, B., Grimshaw, R.: Numerical studies of the periodically forced Bonhoeffer Van der Pol system. Int. J. Bifurc. Chaos 7, 2653–2689 (1997)

    Article  MATH  Google Scholar 

  14. Nomura, T., Sato, S., Doi, S., Segundo, J.P., Stiber, M.D.: A Bonhoeffer–van der Pol oscillator model of locked and non-locked behaviors of living pacemaker neurons. Biol. Cybern. 69, 429–437 (1993)

    Article  MATH  Google Scholar 

  15. Sato, S., Doi, S.: Response characteristics of the BVP neuron model to periodic pulse inputs. Math. Biosci. 112, 243–259 (1992)

    Article  MATH  Google Scholar 

  16. Nomura, T., Sato, S., Doi, S., Segundo, J.P., Stiber, M.D.: Global bifurcation structure of a Bonhoeffer–van der Pol oscillator driven by periodic pulse trains. Biol. Cybernet. 72, 55–67 (1994)

    Article  MATH  Google Scholar 

  17. Doi, S., Sato, S.: The global bifurcation structure of the BVP neuronal model driven by periodic pulse trains. Math. Biosci. 125, 229–250 (1995)

    Article  MATH  Google Scholar 

  18. Tonnelier, A.: McKean caricature of the FitzHugh–Nagumo model: traveling pulses in a discrete diffusive medium. Phys. Rev. E 67, 036105 (2003)

    Article  MathSciNet  Google Scholar 

  19. Flores, G.: Stability analysis for the slow traveling pulse of the FitzHugh–Nagumo system. SIAM J. Math. Anal. 22, 392–399 (2006)

    Article  MathSciNet  Google Scholar 

  20. Gong, P.L., Xu, J.X.: Global dynamics and stochastic resonance of the forced FitzHugh–Nagumo neuron. Phys. Rev. E 63, 031906 (2001)

    Article  Google Scholar 

  21. Buric, N., Todorovic, D.: Dynamics of FitzHugh–Nagumo excitable systems with delayed coupling. Phys. Rev. E 67, 066222 (2003)

    Article  MathSciNet  Google Scholar 

  22. Elmer, C.E., Vleck, E.S.V.: Spatially discrete FitzHugh–Nagumo equations. SIAM J. Appl. Math. 65, 1153–1174 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Barland, S., Piro, O., Giudici, M., Tredicce, J.R., Balle, S.: Experimental evidence of van der Pol–FitzHugh–Nagumo dynamics in semiconductor optical amplifiers. Phys. Rev. E 68, 036209 (2003)

    Google Scholar 

  24. Malevanets, A., Kapral, R.: Microscoic model FitzHugh–Nagumo dynamics. Phys. Rev. E 55, 5657–5670 (1977)

    Article  Google Scholar 

  25. Shinohara, Y., Kanamaru, T., Suzuki, H., Horita, T., Aihara, K.: Array-enhanced coherence resonance and forced dynamics in coupled FitzHugh–Nagumo neurons with noise. Phys. Rev. E 65, 051906 (2002)

    Article  Google Scholar 

  26. Tanabe, S., Pakdaman, K.: Dynamics of moments of FitzHugh–Nagumo neuronal models and stochastic bifurcations. Phys. Rev. E 63, 031911 (2001)

    Article  Google Scholar 

  27. Lindner, B., Geier, L.S.: Analytical approach to the stochastic FitzHugh–Nagumo system and coherence resonance. Phys. Rev. E 60, 7270–7276 (1999)

    Article  Google Scholar 

  28. Sekikawa, M., Inaba, N., Tsubouchi, T.: Chaos via duck solution breakdown in a piecewise linear van der Pol oscillator driven by an extremely small periodic perturbation. Physica D 194, 227–249 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Inaba, N., Nishio, Y., Endo, T.: Chaos via torus breakdown from a four-dimensional autonomous oscillator with two diodes. Physica D 240, 903–912 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sekikawa, M., Inaba, N., Tsubouchi, T., Aihara, K.: Analysis of torus breakdown into chaos in a constrained Duffing van der Pol oscillator. Int. J. Bifurc. Chaos 18, 1051–1068 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kaznelson, Y.: Sigma-finite invariant measures from smooth mapping of the circle. J. Anal. Math. 31, 1–8 (1977)

    Article  Google Scholar 

  32. Ostlund, S., Rand, D., Sethana, J., Siggia, E.: Universal properties of transition from quasi-periodicity to chaos in dissipative systems. Physica D 8, 303–342 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kaneko, K.: Supercritical behavior of disordered orbits of a circle map. Prog. Theor. Phys. 72, 1089–1103 (1984)

    Article  MATH  Google Scholar 

  34. Arima, N., Okazaki, H., Nakano, H.: A generation mechanism of canards in a piecewise linear system. IEICE Trans. Fundamentals Electron. Commun. Comput. E80–A, 447–453 (1997)

    Google Scholar 

  35. Simpson, D.J.W., Kuske, R.: Mixed-mode oscillations in a stochastic piecewise-linear system. Physica D 240, 1189–1198 (2011)

    Article  MATH  Google Scholar 

  36. Rotstein, H.G., Coombes, S., Gheorghe, A.-M.: Canard-like explosion of limit cycles in two-dimensional piecewise-linear models of FitzHugh–Nagumo type. SIAM J. Appl. Dyn. Syst. 11, 135–180 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohiko Inaba.

Appendix

Appendix

Here, we show that similar bifurcation structures demonstrated in the piecewise linear BVP oscillator under weak perturbation can be observed in a smooth BVP circuit; the governing equation of which is given by Eq. (1). This smooth model has been extensively studied.

Fig. 19
figure 19

One-parameter bifurcation diagrams with \(\theta _0=0.9\). a Case \(\omega =1.35\) and b Case \(\omega =0.3\)

We set

$$\begin{aligned} k_1=0.9 \quad \mathrm{and}\quad B_0=0.21, \end{aligned}$$
(14)

and illustrate one-parameter bifurcation diagrams. To illustrate these diagrams, we define a novel Poincaré map \(T_1\) as follows:

$$\begin{aligned}&T_{1}:R^2\longrightarrow R^2, \left( x\left( \frac{2\pi \theta _0}{\omega }\right) ,\; y\left( \frac{2\pi \theta _0}{\omega }\right) \right) ^{\top } \nonumber \\&\mapsto \varphi \left( \frac{2\pi \left( \theta _0+1\right) }{\omega };\ \left( x\left( \frac{2\pi \theta _0}{\omega }\right) ,\ y\left( \frac{2\pi \theta _0}{\omega }\right) \right) ^{\top }\right) \nonumber \\ \end{aligned}$$
(15)

where \(\varphi (\tau ;\ (x_0,y_0)^{\top })=(x(\tau ), y({\tau }))^{\top }\) is a solution where the initial condition is \(\Big (\tau _0,x_0,y_0\Big )=\Big (\frac{2\pi \theta _0}{\omega },x\Big (\frac{2\pi \theta _0}{\omega }\Big ), y\Big (\frac{2\pi \theta _0}{\omega }\Big )\Big )\). \(\theta _0\) is real, which is introduced to simplify the discussion.

Fig. 20
figure 20

Transient and stationary state of chaos disappearance that occur with \(B_1=0.0024<B_{D1-\mathrm{smooth}}\) in the case \(\omega =1.35\) and with the initial condition \((\tau _0,x_0,y_0)=(2\pi \theta _0/\omega ,1.128960834752346,0.309959180011088)\) and with \(\theta _0=0.9\))

Fig. 21
figure 21

a Case \(\theta _0=0.9\). b Case \(\theta _0=0\). c Case \(\theta _0=0.1\). Special one-parameter bifurcation diagrams with \(\omega =1.35\)

Figure 19a, b shows one-parameter bifurcation diagrams for \(\omega =1.35\) and \(\omega =0.3\) on the Poincaré map represented by Eq. (15), respectively, where \(\theta _0=0.9\). Chaos disappearance is observed at \(B_1\simeq 0.00255\cdots \equiv B_{D1-\mathrm{smooth}}\) for \(\omega =1.35\), and at \(B_1\simeq 0.00101\cdots \equiv B_{D2-\mathrm{smooth}}\) for \(\omega =0.3\). In these figures, the initial point \((x_0,y_0)\) of the one-parameter bifurcation diagrams when \(B_1=0\) is chosen such that \(\dot{x}=0\ (x>0)\), i.e., \((x_0,y_0)=(1.128960834752346,0.309959180011088)\). The initial point is chosen at a location on the stable relaxation oscillation path in the absence of perturbation. Note that chaos disappearance occurs in the case \(\omega =1.35\) even if \(B_1=0.0024<B_{D1-\mathrm{smooth}}\) with \((\tau _0,x_0,y_0)= (2\pi \theta _0/\omega ,1.128960834752346,0.309959180011088)\) for \(\theta _0=0.9\) as shown in Fig. 20, which is similar to chaos disappearance observed in the piecewise linear case, as presented in Fig. 9. In contrast, such chaos disappearance does not occur for \(B_{1}<B_{D2-\mathrm{smooth}}\) with \(\omega =0.3\) in the smooth case as far as the numerical results are concerned. Thus, the two distinctive routes to chaos disappearance are observed in the smooth dynamics of (1).

We can easily find chaos disappearance observed for \(B_1<B_{D1-\mathrm{smooth}}\) in case \(\omega =1.35\) presented in Fig. 20 by illustrating the special one-parameter bifurcation diagrams with changing \(\theta _0\) in which the initial point is reset to a point on the stable relaxation oscillation path when no perturbation is applied, i.e., \((x_0,y_0)=(1.128960834752346,0.309959180011088)\) for every increasing bifurcation parameter \(B_1\). In such special diagrams, the bifurcation structure is changed depending on the value of \(\theta _0\). Changing \(\theta _0\) changes the bifurcation parameter \(B_1\) at which chaos disappears. The special one-parameter bifurcation diagrams are presented in Fig. 21. In contrast, the shape of these diagrams for \(\omega =0.3\) do not depend on \(\theta _0\), and they appear to be always the same as that in Fig. 19b.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inaba, N., Sekikawa, M. Chaos disappearance in a piecewise linear Bonhoeffer–van der Pol dynamics with a bistability of stable focus and stable relaxation oscillation under weak periodic perturbation. Nonlinear Dyn 76, 1711–1723 (2014). https://doi.org/10.1007/s11071-014-1240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1240-5

Keywords

Navigation