Skip to main content
Log in

Neutral particle focusing in composite driven dissipative billiards

Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dynamical focusing of ensembles of neutral particles in energy and configuration space has been demonstrated recently (Petri et al. in Phys. Rev. E (R) 82:035204, 2010) using time-dependent elliptical billiards. The interplay of nonlinearity, dissipation, and driving yields the occurrence of attractors in the phase space of the billiard. Here, we show that dissipative oval billiards with slowly oscillating elliptical scatterers in the interior allow for a dynamical focusing on simple periodic trajectories with close to perfect efficiency. This setup should be more amenable to corresponding experiments of certain type which are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stöckmann, H.J.: Quantum Chaos: An Introduction. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Bunimovich, L.A., Dettmann, C.P.: Open circular billiards and the Riemann hypothesis. Phys. Rev. Lett. 94, 100201 (2005)

    Article  Google Scholar 

  3. Zalavsky, G.M.: Chaotic dynamics and the origin of statistical laws. Phys. Today 52, 39 (1999)

    Article  Google Scholar 

  4. Egolf, D.A.: Equilibrium regained: from nonequilibrium chaos to statistical mechanics. Science 287, 101 (2000)

    Article  Google Scholar 

  5. Miao, F., Wijeratne, S., Zhang, Y., Coskun, U.C., Bao, W., Lau, C.N.: Phase-coherent transport in graphene quantum billiards. Science 317, 1530 (2007)

    Article  Google Scholar 

  6. Casati, G., Monasterio, C.M., Prosen, T.: Increasing thermoelectric efficiency: a dynamical systems approach. Phys. Rev. Lett. 101, 016601 (2008)

    Article  Google Scholar 

  7. Stöckmann, H.J., Stein, J.: “Quantum” chaos in billiards studied by microwave absorption. Phys. Rev. Lett. 94, 2215 (1990)

    Article  Google Scholar 

  8. Gräf, H.-D., Harney, H.L., Lengeler, H., Lewenkopf, C.H., Rangacharyulu, C., Richter, A., Schardt, P., Weidenmüller, H.A.: Distribution of eigenmodes in a superconducting stadium billiard with chaotic dynamics. Phys. Rev. Lett. 69, 1296 (1992)

    Article  Google Scholar 

  9. Milner, V., Hanssen, J.L., Campbell, W.C., Raizen, M.G.: Optical billiards for atoms. Phys. Rev. Lett. 86, 1514 (2001)

    Article  Google Scholar 

  10. Friedman, N., Kaplan, A., Carasso, D., Davidson, N.: Observation of chaotic and regular dynamics in atom-optics billiards. Phys. Rev. Lett. 86, 1518 (2001)

    Article  Google Scholar 

  11. Montangero, S., Frustaglia, D., Calarco, T., Fazio, R.: Quantum billiards in optical lattices. Europhys. Lett. 88, 30006 (2009)

    Article  Google Scholar 

  12. Weiss, D., Roukes, M.L., Menschig, A., Grambow, P., von Klitzing, K., Weimann, G.: Electron pinball and commensurate orbits in a periodic array of scatterers. Phys. Rev. Lett. 66, 2790 (1991)

    Article  Google Scholar 

  13. Marcus, C.M., Rimberg, A.J., Westervelt, R.M., Hopkins, P.F., Gossard, A.C.: Conductance fluctuations and chaotic scattering in ballistic microstructures. Phys. Rev. Lett. 69, 2460 (1992)

    Article  Google Scholar 

  14. Blandford, R., Eichler, D.: Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1 (1987)

    Article  Google Scholar 

  15. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics. Appl. Math. Sci., vol. 38. Springer, New York (1992)

    Book  MATH  Google Scholar 

  16. Karlis, A.K., Papachristou, P.K., Diakonos, F.K., Constantoudis, V., Schmelcher, P.: Hyperacceleration in a stochastic Fermi-Ulam model. Phys. Rev. Lett. 97, 194102 (2006)

    Article  Google Scholar 

  17. Lieberman, M.A., Lichtenberg, A.J.: Stochastic and adiabatic behavior of particles accelerated by periodic forces. Phys. Rev. A 5, 1852–1866 (1972)

    Article  Google Scholar 

  18. Lichtenberg, A.J., Lieberman, M.A., Cohen, R.H.: Fermi acceleration revisited. Physica D 1, 291 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gelfreich, V., Turaev, D.: Fermi acceleration in non-autonomous billiards. J. Phys. A, Math. Theor. 41, 212003 (2008)

    Article  MathSciNet  Google Scholar 

  20. Shah, K., Turaev, D., Rom-Kedar, V.: Exponential energy growth in a Fermi accelerator. Phys. Rev. E 81, 056205 (2010)

    Article  MathSciNet  Google Scholar 

  21. Gelfreich, V., Rom-Kedar, V., Shah, K., Turaev, D.: Robust exponential acceleration in time-dependent billiards. Phys. Rev. Lett. 106, 074101 (2011)

    Article  Google Scholar 

  22. Liebchen, B., Büchner, R., Petri, C., Diakonos, F.K., Lenz, F., Schmelcher, P.: Phase space interpretation of exponential Fermi acceleration. New J. Phys. 13, 093039 (2011)

    Article  Google Scholar 

  23. Loskutov, A.Y., Ryabov, A.B., Akinshin, L.G.: Mechanism of Fermi acceleration in dispersing billiards with time-dependent boundaries. J. Exp. Theor. Phys. 89, 966 (1999)

    Article  Google Scholar 

  24. Loskutov, A.Y., Ryabov, A.B.: Particle dynamics in time-dependent stadium-like billiards. J. Stat. Phys. 108, 995 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kamphorst, S.O., Leonel, E.D., da Silva, J.K.L.: The presence and lack of Fermi acceleration in nonintegrable billiards. J. Phys. A, Math. Theor. 40 F887 (2007)

  26. Lenz, F., Diakonos, F.K., Schmelcher, P.: Tunable Fermi acceleration in the driven elliptical billiard. Phys. Rev. Lett. 100, 014103 (2008)

    Article  Google Scholar 

  27. Leonel, E.D., Bunimovich, L.A.: Suppressing Fermi acceleration in a driven elliptical billiard. Phys. Rev. Lett. 104, 224101 (2010)

    Article  Google Scholar 

  28. Oliveira, D.F.M., Robnik, M.: In-flight dissipation as a mechanism to suppress Fermi acceleration. Phys. Rev. E 83, 026202 (2011)

    Article  Google Scholar 

  29. Petri, C., Lenz, F., Diakonos, F.K., Schmelcher, P.: Particle focusing in oscillating dissipative billiards. Phys. Rev. E (R) 82, 035204 (2010)

    Article  MathSciNet  Google Scholar 

  30. Lenz, F., Petri, C., Diakonos, F.K., Schmelcher, P.: Phase-space composition of driven elliptical billiards and its impact on Fermi acceleration. Phys. Rev. E 82, 016206 (2010)

    Article  MathSciNet  Google Scholar 

  31. Berry, M.V.: Regularity and chaos in classical mechanics, illustrated by three deformations of a circular ‘billiard’. Eur. J. Phys. 2, 91 (1981)

    Article  Google Scholar 

Download references

Acknowledgements

B.L. thanks the Landesexzellenzinitiative Hamburg “Frontiers in Quantum Photon Science”, which is funded by the Joachim Herz Stiftung for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benno Liebchen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebchen, B., Petri, C., Krizanac, M. et al. Neutral particle focusing in composite driven dissipative billiards. Nonlinear Dyn 74, 319–325 (2013). https://doi.org/10.1007/s11071-013-0971-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0971-z

Keywords

Navigation