Skip to main content
Log in

Shil’nikov chaos in the 4D Lorenz–Stenflo system modeling the time evolution of nonlinear acoustic-gravity waves in a rotating atmosphere

Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Lorenz–Stenflo system serves as a model of the time evolution of nonlinear acoustic-gravity waves in a rotating atmosphere. In the present paper, we study the Shil’nikov chaos which arises in the 4D Lorenz–Stenflo system. The analytical and numerical results constitute an application of the Shil’nikov theorems to a 4D system (whereas most results present in the literature deal with applying the Shil’nikov theorems to 3D systems), which allows for the study of chaos along homoclinic and heteroclinic orbits arising as solutions to the Lorenz–Stenflo system. We verify the observed chaos via competitive modes analysis—a diagnostic for chaotic systems. We give an analytical test, completely in terms of the model parameters, for the Smale horseshoe chaos near homoclinic orbits of the origin, as well as for the case of specific heteroclinic orbits. Numerical results are shown for other cases in which the general analytical method becomes too complicated to apply. These results can be extended to more complicated higher-dimensional systems governing plasmas, and, in particular, may be used to shed light on period-doubling and Smale horseshoe chaos that arises in such models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stenflo, L.: Acoustic solitary vortices. Phys. Fluids 30, 3297 (1987)

    Article  MATH  Google Scholar 

  2. Stenflo, L.: Acoustic gravity vortex chains. Phys. Lett. A 186, 133 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Stenflo, L., Stepanyants, Yu.: Acoustic gravity modons in the atmosphere. Ann. Geophys. 13, 973 (1995)

    Article  Google Scholar 

  4. Horton, W., Kaladze, T.D., Van Dam, J.W., Garner, T.W.: A method for the intensification of atomic oxygen green line emission by internal gravity waves. J. Geophys. Res. 113, A08312 (2008)

    Article  Google Scholar 

  5. Stenflo, L.: Generalized Lorenz equations for acoustic-gravity waves in the atmosphere. Phys. Scr. 53, 83 (1996)

    Article  Google Scholar 

  6. Stenflo, L.: Nonlinear acoustic-gravity waves. J. Plasma Phys. 75, 841–847 (2009)

    Article  Google Scholar 

  7. Banerjee, S., Saha, P., Chowdhury, A.R.: Chaotic scenario in the Stenflo equations. Phys. Scr. 63, 177 (2001)

    Article  MATH  Google Scholar 

  8. Ekola, T.: A numerical study of the Lorenz and Lorenz–Stenflo systems. Doctoral thesis, Stockholm, ISBN 91-7283-997-x

  9. Liu, Z.: The first integral of nonlinear acoustic gravity wave equation. Phys. Scr. 61, 526 (2000)

    Article  Google Scholar 

  10. Lonngren, K.E., Bai, E.W.: On the synchronization of acoustic gravity waves. Phys. Scr. 64, 489 (2001)

    Article  MATH  Google Scholar 

  11. Yu, M.Y.: Some chaotic aspects of the Lorenz–Stenflo equations. Phys. Scr. T 82, 10 (1999)

    Article  Google Scholar 

  12. Yu, M.Y., Yang, B.: Periodic and chaotic solutions of the generalized Lorenz equations. Phys. Scr. 54, 140 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhou, C., Lai, C.H., Yu, M.Y.: Chaos, bifurcation and periodic orbits of the Lorenz–Stenflo system. Phys. Scr. 35, 394 (1997)

    Article  Google Scholar 

  14. Zhou, C.T., Lai, C.H., Yu, M.Y.: Bifurcation behavior of the generalized Lorenz equations at large rotation numbers. J. Math. Phys. 38, 5225 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Van Gorder, R.A., Choudhury, S.R.: Shil’nikov analysis of homoclinic and heteroclinic orbits of the T system. J. Comput. Nonlinear Dyn. 6, 021013 (2011)

    Article  Google Scholar 

  16. Sun, F.-Y.: Shil’nikov heteroclinic orbits in a chaotic system. Int. J. Mod. Phys. B 21, 4429–4436 (2007)

    Article  MATH  Google Scholar 

  17. Wang, J., Zhao, M., Zhang, Y., Xiong, X.: Si’lnikov-type orbits of Lorenz-family systems. Physica A 375, 438–446 (2007)

    Article  MathSciNet  Google Scholar 

  18. Wilczak, D.: The existence of Shilnikov homoclinic orbits in the Michelson system: a computer assisted proof. Found. Comput. Math. 6, 495–535 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lamb, J.S.W., Teixeira, M.-A., Webster, K.N.: Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in ℝ3. J. Differ. Equ. 219, 78–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Corbera, M., Llibre, J., Teixeira, M.-A.: Symmetric periodic orbits near a heteroclinic loop in ℝ3 formed by two singular points, a semistable periodic orbit and their invariant manifolds. Physica D 238, 699–705 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Krauskopf, B., Rieß, T.: A Lin’s method approach to finding and continuing heteroclinic connections involving periodic orbits. Nonlinearity 21, 1655–1690 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wagenknecht, T.: Two-heteroclinic orbits emerging in the reversible homoclinic pitchfork bifurcation. Nonlinearity 18, 527–542 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jiang, Y., Sun, J.: Si’lnikov homoclinic orbits in a new chaotic system. Chaos Solitons Fractals 32, 150–159 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, X.: Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system. Chaos Solitons Fractals 42, 2208–2217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, J., Zhao, M., Zhang, Y., Xiong, X.: Si’lnikov-type orbits of Lorenz-family systems. Physica A 375, 438–446 (2007)

    Article  MathSciNet  Google Scholar 

  26. Zhou, L., Chen, Y., Chen, F.: Stability and chaos of a damped satellite partially filled with liquid. Acta Astronaut. 65, 1628–1638 (2009)

    Article  Google Scholar 

  27. Zhou, T., Chen, G., Celikovský, S.: Si’lnikov chaos in the generalized Lorenz canonical form of dynamical systems. Nonlinear Dyn. 39, 319–334 (2005)

    Article  MATH  Google Scholar 

  28. Wang, J., Chen, Z., Yuan, Z.: Existence of a new three-dimensional chaotic attractor. Chaos Solitons Fractals 42, 3053–3057 (2009)

    Article  MATH  Google Scholar 

  29. Watada, K., Tetsuro, E., Seishi, H.: Shilnikov orbits in an autonomous third-order chaotic phase-locked loop. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 45, 979–983 (1998)

    Article  Google Scholar 

  30. Wang, Z.: Existence of attractor and control of a 3D differential system. Nonlinear Dyn. 60, 369–373 (2010)

    Article  MATH  Google Scholar 

  31. Cao, Y.Y., Chung, K.W., Xu, J.: A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method. Nonlinear Dyn. 64, 221–236 (2011)

    Article  MathSciNet  Google Scholar 

  32. Chen, H., Xu, Q.: Bifurcations and chaos of an inclined cable. Nonlinear Dyn. 57, 37–55 (2009)

    Article  MATH  Google Scholar 

  33. Chen, H., Xu, Q.: Global bifurcations and multi-pulse orbits of a parametric excited system with autoparametric resonance. Nonlinear Dyn. 65, 187–216 (2011)

    Article  MATH  Google Scholar 

  34. Wang, R., Xiao, D.: Bifurcations and chaotic dynamics in a 4-dimensional competitive Lotka–Volterra system. Nonlinear Dyn. 59, 411–422 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shilnikov, A.: Complete dynamical analysis of a neuron model. Nonlinear Dyn. 68, 305–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yagasaki, K.: Detection of homoclinic bifurcations in resonance zones of forced oscillators. Nonlinear Dyn. 28, 285–307 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, Y., Zhu, D.: Bifurcations of heterodimensional cycles with one orbit flip and one inclination flip. Nonlinear Dyn. 60, 1–13 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhou, T., Tang, Y., Chen, G.: Chen’s attractor exists. Int. J. Bifurc. Chaos 9, 3167–3177 (2004)

    MathSciNet  Google Scholar 

  39. Chen, Z., Yang, Y., Yuan, Z.: A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system. Chaos Solitons Fractals 38, 1187–1196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Silva, C.P.: Shil’nikov theorem—a tutorial. IEEE Trans. Circuits Syst. 40, 675–682 (1993)

    MATH  Google Scholar 

  41. Shil’nikov, L.P.: A case of the existence of a countable number of periodic motions. Sov. Math. Dokl. 6, 163–166 (1965)

    Google Scholar 

  42. Shil’nikov, L.P.: A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type. Math. USSR Sb. 10, 91–102 (1970)

    Article  MATH  Google Scholar 

  43. Yu, P.: Bifurcation, limit cycles and chaos of nonlinear dynamical systems. In: Sun, J.-Q., Luo, A.C.J. (eds.) Bifurcation and Chaos in Complex Systems, pp. 92–120. Elsevier Science, Amsterdam (2006), Chap. 1

    Google Scholar 

  44. Yu, W., Yu, P., Essex, C.: Estimation of chaotic parameter regimes via generalized competitive mode approach. Commun. Nonlinear Sci. Numer. Simul. 7, 197–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yu, P., Yao, W., Chen, G.: Analysis on topological properties of the Lorenz and the Chen attractors using GCM. Int. J. Bifurc. Chaos 17, 2791–2796 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Chen, Z., Wu, Z.Q., Yu, P.: The critical phenomena in a hysteretic model due to the interaction between hysteretic damping and external force. J. Sound Vib. 284, 783–803 (2005)

    Article  MATH  Google Scholar 

  47. Van Gorder, R.A., Choudhury, S.R.: Classification of chaotic regimes in the T system by use of competitive modes. Int. J. Bifurc. Chaos 20, 3785–3793 (2010)

    Article  MATH  Google Scholar 

  48. Van Gorder, R.A.: Emergence of chaotic regimes in the generalized Lorenz canonical form: a competitive modes analysis. Nonlinear Dyn. 66, 153–160 (2011)

    Article  Google Scholar 

  49. Van Gorder, R.A.: Traveling wave solutions of the n-dimensional coupled Yukawa equations. Appl. Math. Lett. 25, 1106–1110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Choudhury, S.R., Van Gorder, R.A.: Competitive modes as reliable predictors of chaos versus hyperchaos and as geometric mappings accurately delimiting attractors. Nonlinear Dyn. 69, 2255–2267 (2012)

    Article  Google Scholar 

  51. Reeves, B., Van Gorder, R.A., Choudhury, S.R.: Chaotic regimes, post-bifurcation dynamics, and competitive modes for a generalized double Hopf normal form. Int. J. Bifurc. Chaos 22, 1250292 (2012)

    Article  Google Scholar 

  52. Ahn, C.K.: An answer to the open problem of synchronization for time-delayed chaotic systems. Eur. Phys. J. Plus 127(2), 1–9 (2012)

    Article  Google Scholar 

  53. Ahn, C.K.: A T-S fuzzy model based adaptive exponential synchronization method for uncertain delayed chaotic systems: an LMI approach. J. Inequal. Appl. 2010, 168962 (2010)

    Article  Google Scholar 

  54. Ahn, C.K.: Neural network H chaos synchronization. Nonlinear Dyn. 60, 295–302 (2010)

    Article  MATH  Google Scholar 

  55. Ahn, C.K., Jung, S.T., Kang, S.K., Joo, S.C.: Adaptive H synchronization for uncertain chaotic systems with external disturbance. Commun. Nonlinear Sci. Numer. Simul. 15, 2168–2177 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ahn, C.K.: T-S fuzzy H synchronization for chaotic systems via delayed output feedback control. Nonlinear Dyn. 59, 535–543 (2010)

    Article  MATH  Google Scholar 

  57. Ahn, C.K.: L 2L chaos synchronization. Prog. Theor. Phys. 123, 421–430 (2010)

    Article  MATH  Google Scholar 

  58. Ahn, C.K.: Fuzzy delayed output feedback synchronization for time-delayed chaotic systems. Nonlinear Anal. Hybrid Syst. 4, 16–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Ahn, C.K.: Output feedback H synchronization for delayed chaotic neural networks. Nonlinear Dyn. 59, 319–327 (2010)

    Article  MATH  Google Scholar 

  60. Ahn, C.K.: Adaptive H anti-synchronization for time-delayed chaotic neural networks. Prog. Theor. Phys. 122, 1391–1403 (2009)

    Article  MATH  Google Scholar 

  61. Ahn, C.K.: An H approach to anti-synchronization for chaotic systems. Phys. Lett. A 373, 1729–1733 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. L. Stenflo for providing a reprint which inspired this project. R.A.V. was supported in part by an NSF research fellowship grant number # 1144246.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Van Gorder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Gorder, R.A. Shil’nikov chaos in the 4D Lorenz–Stenflo system modeling the time evolution of nonlinear acoustic-gravity waves in a rotating atmosphere. Nonlinear Dyn 72, 837–851 (2013). https://doi.org/10.1007/s11071-013-0756-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0756-4

Keywords

Navigation