Skip to main content
Log in

Decentralized sliding mode quantized feedback control for a class of uncertain large-scale systems with dead-zone input

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the robust quantized feedback stabilization problem for a class of uncertain nonlinear large-scale systems with dead-zone nonlinearity in actuator devices. It is assumed that state signals of each subsystem are quantized and the quantized state signals are transmitted over a digital channel to the controller side. Combined with a proposed discrete on-line adjustment policy of quantization parameters, a decentralized sliding mode quantized feedback control scheme is developed to tackle parameter uncertainties and dead-zone input nonlinearity simultaneously, and ensure that the system trajectory of each subsystem converges to the corresponding desired sliding manifold. Finally, an example is given to verify the validity of the theoretical result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wen, C., Zhou, J.: Decentralized adaptive stabilization in presence of unknown backlash-like hysteresis. Automatica 43(3), 426–440 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yan, X.G., Wang, J.J., Lv, X.Y., Zhang, S.Y.: Decentralized output feedback robust stabilization for a class of nonlinear interconnected systems with similarity. IEEE Trans. Autom. Control 43(2), 294–299 (1998)

    Article  MATH  Google Scholar 

  3. Yan, X.G., Spurgeon, S.K., Edwards, C.: Decentralized robust sliding mode control for a class of nonlinear interconnected systems by static output feedback. Automatica 40(4), 613–620 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yang, G.H., Wang, J.L.: Decentralized H controller design for composite systems: linear case. Int. J. Control 72(9), 815–825 (1999)

    Article  MATH  Google Scholar 

  5. Yang, G.H., Zhang, S.Y.: Stabilizing controller for uncertain symmetric composite systems. Automatica 31(2), 337–340 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bakule, L.: Stabilization of uncertain switched symmetric composite systems. Nonlinear Anal. Hybrid Syst. 1(2), 188–197 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bakule, L.: Decentralized control: an overview. Annu. Rev. Control 32(1), 87–98 (2008)

    Article  MathSciNet  Google Scholar 

  8. Mahmoud, M.S.: Decentralized stabilization of interconnected systems with time-varying delays. IEEE Trans. Autom. Control 54(11), 2663–2668 (2009)

    Article  Google Scholar 

  9. Duan, Z., Wang, J., Chen, G., Huang, L.: Stability analysis and decentralized control of a class of complex dynamical networks. Automatica 44(4), 1028–1035 (2008)

    Article  MathSciNet  Google Scholar 

  10. Wang, R., Liu, Y.-J., Tong, S.-J.: Decentralized control of uncertain nonlinear stochastic systems based DSC. Nonlinear Dyn. 64(4), 305–314 (2011)

    Article  MathSciNet  Google Scholar 

  11. Zhou, J.: Decentralized adaptive control for large-scale time-delay systems with dead-zone input. Automatica 44(7), 1790–1799 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yoo, S.J., Park, J.B., Choi, Y.H.: Decentralized adaptive stabilization of interconnected nonlinear systems with unknown non-symmetric dead-zone input. Automatica 45(2), 436–443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hung, J.Y., Gao, W.B., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993)

    Article  Google Scholar 

  14. Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shyu, K.K., Liu, W.J., Hsu, K.C.: Design of large-scale time-delayed systems with dead-zone input via variable structure control. Automatica 41(7), 1239–1246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shyu, K.K., Liu, W.J., Hsu, K.C.: Decentralised variable structure control of uncertain large-scale systems containing a dead-zone. IEE Proc., Control Theory Appl. 150(5), 467–475 (2003)

    Article  Google Scholar 

  17. Elia, N., Mitter, S.K.: Stabilization of linear systems with limited information. IEEE Trans. Autom. Control 46(9), 1384–1400 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fu, M., Xie, L.: The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1698–1711 (2005)

    Article  MathSciNet  Google Scholar 

  19. Fu, M., Xie, L.: Quantized feedback control for linear uncertain systems. Int. J. Robust Nonlinear Control 20(8), 843–857 (2009)

    MathSciNet  Google Scholar 

  20. Brockett, R.W., Liberzon, D.: Quantized feedback stabilization of linear system. IEEE Trans. Autom. Control 45(7), 1279–1289 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liberzon, D.: Hybrid feedback stabilization of systems with quantized signals. Automatica 39(9), 1543–1554 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Corradini, M.L., Orlando, G.: Robust quantized feedback stabilization of linear systems. Automatica 44(9), 2458–2462 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Edwards, C., Spurgeon, S.K.: Sliding Mode Control: Theory and Applications. Taylor & Francis, London (1998)

    Google Scholar 

  24. Yun, S.W., Choi, Y.J., Park, P.: H 2 control of continuous-time uncertain linear with input quantization and matched disturbances. Automatica 45(10), 2435–2439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zheng, B.C., Yang, G.H.: Robust quantized feedback stabilization of linear systems based on sliding mode control. Optim. Control Appl. Methods (2012). doi:10.1002/oca.2032

    Google Scholar 

  26. Hsu, K.C.: Decentralized variable structure control design for uncertain large-scale systems with series nonlinearities. Int. J. Control 68(6), 1231–1240 (1997)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Funds for Creative Research Groups of China (No. 60821063), the Funds of National Science of China (Grant Nos. 60974043, 60904010, 60804024, 60904025, 61273155), the Funds of Doctoral Program of Ministry of Education, China (20100042110027), the Fundamental Research Funds for the Central Universities (Nos. N090604001, N090604002, N100604022, N110804001). A Foundation for the Author of National Excellent Doctoral Dissertation of P.R. China (No. 201157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Chao Zheng.

Appendix: Proof of the technical lemma

Appendix: Proof of the technical lemma

Proof of Lemma 2

First, it is obvious that the inequality

(22)

is satisfied by virtue of (5). Next, we will illustrate that the inequality \(|C_{i}|\varDelta _{i}\mu_{i}\leq\frac{1}{\beta_{i}}|C_{i}q_{\mu_{i}}(x_{i})|\) holds when the parameter μ i satisfies \(0<\mu_{i}\leq\frac{|C_{i}x_{i}|}{(\beta_{i}+1)|C_{i}|\varDelta _{i}}\).

Multiplying (β i +1)|C i |Δ i from both sides of (8), we have

(23)

Subtracting |C i |Δ i μ i from both sides of the above inequality (23), one can obtain

Furthermore, combined with inequality (22), it is easy to check that

Owing to the triangle basic inequality |ab|≥|a|−|b|,∀a∈ℝ,b∈ℝ, it follows that

Utilizing the relationship \(q_{\mu_{i}}(x_{i})=x_{i}+e_{\mu_{i}}\), one can see that

(24)

Therefore, by virtue of (22) and (24), it can be seen that (9) is obtained. Thus, the proof is completed. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, BC., Yang, GH. Decentralized sliding mode quantized feedback control for a class of uncertain large-scale systems with dead-zone input. Nonlinear Dyn 71, 417–427 (2013). https://doi.org/10.1007/s11071-012-0668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0668-8

Keywords

Navigation