Skip to main content
Log in

Codimension-two bifurcation analysis in two-dimensional Hindmarsh–Rose model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we analyze the codimension-2 bifurcations of equilibria of a two-dimensional Hindmarsh–Rose model. By using the bifurcation methods and techniques, we give a rigorous mathematical analysis of Bautin bifurcation. The main result is that no more than two limit cycles can be bifurcated from the equilibrium via Hopf bifurcation; sufficient conditions for the existence of one or two limit cycles are obtained. This paper also shows that the model undergoes a Bogdanov–Takens bifurcation which includes a saddle-node bifurcation, an Andronov–Hopf bifurcation, and a homoclinic bifurcation. In some case, the globally asymptotical stability is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronov, A., Leontovich, E.: Some cases of the dependence of the limit cycles upon parameters. Uchen. Zap. Gork. Univ. 6, 3–24 (1939) (in Russian)

    Google Scholar 

  2. Hopf, E.: Abzweigung einer periodischen Losung von einer stationaren Losung eines Differetialsystems. Ber. Math.-Phys. Kl. Sachs, Acad. Wiss. Leipz. 94, 1–22 (1942)

    Google Scholar 

  3. Bautin, N.: The Behavior of Dynamical Systems Near to the Boundaries of Stability. Gostekhizdat, Moscow–Leningrad (1949). 164 pp, 2nd edn., Nauka, Moscow Zbl.537.34001 (1984)

    Google Scholar 

  4. Bautin, N., Shilnikov, L.: Supplement I: Behavior of dynamical systems near stability soundaries of equilibria and periodic motions. In: The Limit Cycle Bifurcation and its Applications. Russian translation of the book by Marsden, J.E. and McCracken. Mir, Moscow (1980) (in Russian)

    Google Scholar 

  5. Serebryakova, N.: On the behavior of dynamical systems with one degree of freedom near that point of the stability boundary, where soft bifurcation turns into sharp. Akad. Nauk SSSR.-Mech. Mash. 2, 1–10 (1959) (in Russian)

    Google Scholar 

  6. Hassard, B., Kazarinoff, N., Wan, Y.-H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, London (1981)

    MATH  Google Scholar 

  7. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1998)

    MATH  Google Scholar 

  8. Gasull, A., Guillamon, A.: An explicit expression of the first Lyapunov and period constants with applications. J. Math. Anal. Appl. 211, 190–212 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Takens, F.: Unfoldings of certain singularities of vector fields: generalized Hopf bifurcations. J. Differ. Equ. 14, 476–493 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Han, M.: Lyapunov constants and Hopf cyclicity of Lienard systems. Ann. Differ. Equ. 15(2), 113–126 (1999)

    MATH  Google Scholar 

  11. Bogdanov, R.: Versal deformations of a singular point on the plane in the case of zero eigenvalues. In: Proceedings of Petrovskii Seminar, vol. 2, pp. 37–65. Moscow State University, Moscow (1976) (in Russian) (English translation: Selecta Math. Soviet. 1(4), 389–421, 1981)

    Google Scholar 

  12. Takens, F.: Forced oscillations and bifurcations. Comm. Math. Inst., Rijkuniversiteit Utrecht 2, 1–111 (1974)

    Google Scholar 

  13. Takens, F.: Singularities of vector fields. Inst. Hautes Etudes Sci. Publ. Math. 43, 47–100 (1974)

    Article  MathSciNet  Google Scholar 

  14. Dumortier, F., Roussarie, R., Sotomayor, J.: Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3. Ergod. Theory Dyn. Syst. 7, 375–413 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dumortier, F., Roussarie, R., Sotomayor, J., Zoladek, H.: Bifurcations of planar vector fields. Nilpotent singularities and Abelian integrals. In: Lecture Notes in Mathematics, vol. 1480. Springer, Berlin (1991)

    Google Scholar 

  16. Hodgkin, A.L., Huxley, A.F.: A qualitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  17. FitzHugh, R.: Impulses and physiological state in theoretical models of nerve membrane. Biophys. J. 1, 445–467 (1961)

    Article  Google Scholar 

  18. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  19. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)

    Article  Google Scholar 

  20. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 221, 87–102 (1984)

    Article  Google Scholar 

  21. Svetoslav, N.: An alternative bifurcation analysis of the Rose–Hindmarsh model. Chaos Solitons Fractals 23, 1643–1649 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Gonz’alez-Miranda, J.M.: Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int. J. Bifurc. Chaos 17, 3071–3083 (2007)

    Article  MathSciNet  Google Scholar 

  23. Tsuji, S., Ueta, T., Kawakami, H., Fujii, H., Aihara, K.: Bifurcations in two-dimensional Hindmarsh–Rose type model. Int. J. Bifurc. Chaos 17, 985–998 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Innocentia, G., Morelli, A., Genesio, R., Torcini, A.: Dynamical phases of the Hindmarsh–Rose neuronal model: studies of the transition from bursting to spiking chaos. Chaos 17, 043128 (2007)

    Article  MathSciNet  Google Scholar 

  25. Storace, M., Linaro, D., Lange, E.: The Hindmarsh–Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18, 033128 (2008)

    Article  MathSciNet  Google Scholar 

  26. Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982)

    Book  MATH  Google Scholar 

  27. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983)

    MATH  Google Scholar 

  28. Han, M.A.: Theory of Periodic Solutions and Bifurcations of Dynamical Systems. Science Publishing House, Beijing (2002)

    Google Scholar 

  29. Carrillo, F.A., Verduzco, F., Delgado, F.: Analysis of the Takens–Bogdanov bifurcation on m-parameterized vector fields. Int. J. Bifurc. Chaos 20, 995–1005 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ringkrist, M., Zhou, Y.: On existence and nonexistence of limit cycles for FitzHugh–Nagumo class models. In: New Directions and Applications in Control Theory, pp. 337–351. Springer, Berlin (2005)

    Chapter  Google Scholar 

  31. Ringkrist, M., Zhou, Y.: On the dynamical behaviour of FitzHugh–Nagumo systems: revisited. Nonlinear Anal. 71, 2667–2687 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanliang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Liu, S. Codimension-two bifurcation analysis in two-dimensional Hindmarsh–Rose model. Nonlinear Dyn 67, 847–857 (2012). https://doi.org/10.1007/s11071-011-0030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0030-6

Keywords

Navigation