Skip to main content
Log in

Soil-gas radon anomalies in three study areas of Central-Northern Calabria (Southern Italy)

Natural Hazards Aims and scope Submit manuscript

Abstract

Soil-gas radon concentrations and exhalation rates have generally been observed to be anomalously high along active faults in many parts of the world. The soil-gas method is based on the principle that faults and fractures in rocks are highly permeable pathways along which gases can migrate upward from deep crust and mantle to soil cover, retaining their source signatures. The present study summarizes the influence of fault zones on anomalous radon concentrations in soil by integrated geophysical and geo-structural analyses in three study areas of Central-Northern Calabria (Southern Italy). Soil-gas radon surveys have been carried out by means of an alpha scintillation counting system, at 12,509 locations between 2002 and 2004. A geostatistical approach has been used to estimate the spatial distribution of soil radon concentrations. Relations among soil-gas distribution and geo-structural features have been evaluated by ordinary multi-Gaussian kriging. Highest soil radon concentrations (ca. 90 kBq m−3) have been measured in the Rossanese sector. In the three study areas, no appreciable differences can be noticed among lithotypes, with the highest concentration values (ca. 89 kBq m−3) measured in alluvial deposit and in clay. Measurements of soil-gas radon reveal anomalies clearly connected to the tectonic structures. Increased signals are linearly distributed along regional WNW–ESE trending shear zones, with main pathways of concentration also recognizable along the E–W fault system in the Rossanese sector, the N–S fault system in the Crati Graben and the Catanzaro Trough, and the NE–SW fault system in the Catanzaro Trough. The distribution of epicentres of historical earthquakes occurred between 1184 and 2001 confirms the recent activity of the same fault systems. Soil-gas radon concentrations generally increase, as expected, with decreasing distance to the faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Adepelumi AA, Ajayi TR, Ako BD, Ojo AO (2005) Radon soil gas as a geological mapping tool: case study from basement complex of Nigeria. Environ Geol 48:762–770

    Article  Google Scholar 

  • Al-Taj M, Al-Bataina B, Atallah M (2004) Evaluation of geodynamic activity of the Dead Sea transform fault by radon gas concentrations. Environ Geol 46:574–582

    Article  Google Scholar 

  • Al-Tamimi MH, Abumurad KM (2001) Radon anomalies along faults in North of Jordan. Radiat Meas 34:397–400

    Article  Google Scholar 

  • Alvarez W (1976) A former continuation of the Alps. Bull Geol Soc Am 87:891–896

    Article  Google Scholar 

  • Amodio-Morelli L, Bonardi G, Colonna V, Dietrich D, Giunta G, Ippolito F, Liguori V, Lorenzoni S, Paglionico A, Perrone V, Piccarreta G, Russo M, Scandone P, Zanettin-Lorenzoni E, Zuppetta A (1976) L’Arco Calabro-Peloritano nell’orogene appennino-maghrebide. Mem Soc Geol Ital 17:1–60

    Google Scholar 

  • Baciu AC (2005) Radon and thoron progeny concentration variability in relation to meteorological conditions at Bucharest (Romania). J Environ Radioact 83:171–189

    Article  Google Scholar 

  • Bruno C, Buttafuoco G, Falcone G, Greco R, Guagliardi I, Iovine G, Tallarico A (2012) Soil gas radon concentrations in three study areas of Calabria (southern Italy). Rend Online Soc Geol Ital. 21:381–383

    Google Scholar 

  • Buttafuoco G, Tallarico A, Falcone G (2007) Mapping soil gas radon concentration: a comparative study of geostatistical methods. Environ Monit Assess 131:135–151

    Article  Google Scholar 

  • Buttafuoco G, Tallarico A, Falcone G, Guagliardi I (2010) A geostatistical approach for mapping and uncertainty assessment of geogenic radon gas in soil in an area of southern Italy. Environ Earth Sci 61:491–505

    Article  Google Scholar 

  • Carobene L (2003) Genesi, età, sollevamento ed erosione dei terrazzi marini di Crosia-Calopezzati (Costa ionica della Calabria-Italia). Il Quaternario 16:43–90

    Google Scholar 

  • Chilès JP, Delfiner P (2012) Geostatistics: modelling spatial uncertainty, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Choubey VM, Sharma KK, Ramola RC (1997) Geology of radon occurrence around Jari in Parvati Valley, Himachal Pradesh, India. J Environ Radioact 34:139–147

    Article  Google Scholar 

  • Ciotoli G, Etiope G, Guerra M, Lombardi S (1999) The detection of concealed faults in the Ofanto Basin using the correlation between soil-gas fracture surveys. Tectonophysics 301:321–332

    Article  Google Scholar 

  • Critelli S, Le Pera E (2000) Geological map of Calabria, southern Italy (scale 1:330,000). In: Gabriele S (ed) Valutazione delle piene in Calabria. Collection of n.11 thematic maps. GNDCI, CNR-IRPI of Cosenza. Rubbettino, Soveria Mannelli (CZ)

  • Durrance EM, Gregory RG (1990) Helium and radon transport mechanisms in hydrothermal circulation systems of Southwest England. In: In: Durrance EM, Galimov EM, Hinckle ME, Reimer GM, Sugisaki R, Autustithis SS (eds) Geochemistry of gaseous elements and compounds. Theophrastus Publ., Athens, pp 337–352

  • Etiope G, Lombardi S (1995) Evidence for radon transport by carrier gas through faulted clays in Italy. J Radioanal Nucl Chem 193:291–300

    Article  Google Scholar 

  • Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Inter 129:185–204

    Article  Google Scholar 

  • Font L, Baixeras C, Moreno V, Bach J (2008) Soil radon levels across the Amer fault. J Radiat Meas 43:S319–S323

    Article  Google Scholar 

  • George AC (1990) An overview of instrumentation for measuring environmental radon and radon progeny. Rep. T-NS/37/2/1/38220. IEEE Trans Nucl Sci 37:892–901

    Article  Google Scholar 

  • Gold T, Soter S (1985) Fluid ascent through the solid lithosphere and its relation to earthquakes. Pageoph 122:492–530

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, Oxford

    Google Scholar 

  • Guagliardi I, Buttafuoco G, Apollaro C, Bloise A, De Rosa R, Cicchella D (2013a) Using gamma-ray spectrometry and geostatistics for assessing geochemical behaviour of radioactive elements in the Lese catchment (Southern Italy). Int J Environ Res 7(3):645–658

    Google Scholar 

  • Guagliardi I, Buttafuoco G, Ricca N, Cipriani MG, Civitelli D, Froio R, Gabriele AL, De Rosa R (2013b) Modelling seasonal variations of natural radionuclides in agricultural soils. In: E3S Web of Conferences 1, 08009. doi:10.1051/e3sconf/20130108009

  • Guagliardi I, Rovella N, Apollaro C, Bloise A, De Rosa R, Scarciglia F, Buttafuoco G (2016) Effects of source rocks, soil features and climate on natural gamma radioactivity in the Crati valley (Calabria, Southern Italy). Chemosphere 150:97–108

    Article  Google Scholar 

  • Hancock PL (1984) Brittle microtectonics: principles and practice. J Struct Geol 7:437–454

    Article  Google Scholar 

  • Hinkle M (1994) Environmental conditions affecting concentrations of He, CO2, O2, and N2 in soil gases. Appl Geochem 9:53–63

    Article  Google Scholar 

  • Ielsch G, Thie´blemont D, Labed V, Richon P, Tymen G, Ferry C, Robe´ MC, Baubron MC, Be´chennec JC, Ielsch G, Ielsch G (2001) Radon (222Rn) level variations on a regional scale: influence of the basement trace element (U, Th) geochemistry on radon exhalation rates. J Environ Radioact 53:75–90

    Article  Google Scholar 

  • Je H-K, Kang C, Chon H-T (1999) A preliminary Study on soil-gas radon geochemistry according to different bedrock geology in Korea. Environ Geochem Health 21:117–131

    Article  Google Scholar 

  • Jönsson G (1995) Radon gas—where from and what to do? Radiat Meas 25:537–546

    Article  Google Scholar 

  • Kardos R, Gregorič A, Jónás J, Vaupotič J, Kovács T, Ishimori Y (2015) Dependence of radon emanation of soil on lithology. J Radioanal Nucl Chem 304:1321–1327

    Article  Google Scholar 

  • Kemsky J, Klingel R, Siehl A, Valdivia-Manchego M (2009) From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany. Environ Geol 56(7):1269–1279

    Article  Google Scholar 

  • King CK, King BS, Evans WC, Zang W (1996) Spatial radon anomalies on active faults in California. Appl Geochem 11:497–510

    Article  Google Scholar 

  • Lucas HF (1957) Improved low-level alpha scintillation counter for radon. Rev Sci Instrum 28(9):680–683

    Article  Google Scholar 

  • Mahajan S, Walia V, Bajwa BS, Kumar A, Singh S, Seth N, Dhar S, Gill GS, Yang TF (2010) Soil-gas radon/helium surveys in some neotectonic areas of NW Himalayan foothills, India. Nat Hazards Earth Syst Sci 10:1221–1227

    Article  Google Scholar 

  • Man CK, Yeung HS (1998) Variations of outdoor radon concentrations in Hong Hong. J Environ Radiact 40:137–145

    Article  Google Scholar 

  • Mudd GM (2008) Radon sources and impacts: a review of mining and non-mining issues. Rev Environ Sci Biotechnol 7:325–353

    Article  Google Scholar 

  • Neri M, Giammanco S, Ferrera E, Patanè G, Zanon V (2011) Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: the example of Mt. Etna (Italy). J Environ Radioact 102:863–870

    Article  Google Scholar 

  • Oliver MA, Khayrat AL (2001) A geostatistical investigation of the spatial variation of radon in soil. Comput Geosci 27(8):939–957

    Article  Google Scholar 

  • Papastefanou C (2010) Variation of radon flux along active fault zones in association with earthquake occurrence. Radiat Meas 45:943–951

    Article  Google Scholar 

  • Pereira AJSC, Godinho MM, Neves LJPF (2010) On the influence of faulting on small-scale soil-gas radon variability: a case study in the Iberian Uranium Province. J Environ Radioact 101:875–882

    Article  Google Scholar 

  • Pinault JL, Baubron JC (1997) Signal processing of diurnal and semidiurnal variations in radon and atmospheric pressure: a new tool for accurate in situ measurement of soil gas velocity, pressure gradient, and tortuosity. J Geophys Res 102(B8):18101–18120

    Article  Google Scholar 

  • Pizzino L, Burrato P, Quattrocchi F, Valensise G (2004) Geochemical signatures of large active faults: the example of the 5 February 1783, Calabrian earthquake (southern Italy). J Seismol 8:363–380

    Article  Google Scholar 

  • Planinić J, Radolić V, Lazanin Ž (2001) Temporal variations of radon in soil related to earthquakes. Appl Radiat Isot 55:267–272

    Article  Google Scholar 

  • Ramola RC (2009) Relation between spring water radon anomalies and seismic activity in Garhwal Himalaya. Acta Geophys 58:814–827

    Article  Google Scholar 

  • Ramola RC, Choubey VM, Prasad Y, Prasad G, Bartarya SK (2006) Variation in radon concentration and terrestrial gamma radiation dose rates in relation to the lithology in southern part of Kumaon Himalaya, India. Radiat Meas 41:714–720

    Article  Google Scholar 

  • Reddy DV, Nagabhushanam P, Sukhija BS, Rajender Reddy G (2010) Continuous radon monitoring in soil gas towards earthquake precursory studies in basaltic region. Radiat Meas 45:935–942

    Article  Google Scholar 

  • Rovida A, Camassi R, Gasperini P, Stucchi M (2011) CPTI11, the 2011 version of the parametric catalogue of Italian earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. Milano, Bologna. doi:10.6092/INGV.IT-CPTI11

  • Segovia N, Gaso MI, Armienta MA (2007) Environmental radon studies in Mexico. Environ Geochem Health 29:143–153

    Article  Google Scholar 

  • Seminsky KZh, Bobrov AA (2009) Radon activity of faults (western Baikal and southern Angara areas). Russ Geol Geophys 50:682–692

    Article  Google Scholar 

  • Semkow TM, Parekh PP, Schwenker CD, Dansereau R, Webber JS (1994) Efficiency of the Lucas scintillation cell. Nucl Instrum Methods Phys Res A 353:515–518

    Article  Google Scholar 

  • Singh B, Singh S, Singh Bajwa B, Singh J, Kumar A (2011) Soil gas radon analysis in some areas of Northern Punjab, India. Environ Monit Assess 174:209–217

    Article  Google Scholar 

  • Sorriso-Valvo M, Tansi C (1996) Grandi frane e deformazioni gravitative profonde di versante della Calabria-Note illustrative per la carta al 250.000. Geogr Fis Din Quat 19:395–408

    Google Scholar 

  • Spina V, Tondi E, Mazzoli S (2011) Complex basin development in a wrench-dominated back-arc area: tectonic evolution of the Crati Basin, Calabria, Italy. J Geodyn 51:90–109

    Article  Google Scholar 

  • Tansi C, Sorriso-Valvo M, Greco R (2000) Relationship between joint separation and faulting: an initial numerical appraisal. Eng Geol 52:225–230

    Article  Google Scholar 

  • Tansi C, Iovine G, Folino Gallo M (2005a) Tettonica attiva e recente, e manifestazioni gravitative profonde, lungo il bordo orientale del graben del Fiume Crati (Calabria settentrionale). Boll Soc Geol Italy 124:563–578

    Google Scholar 

  • Tansi C, Tallarico A, Iovine G, Folino Gallo M, Falcone G (2005b) Interpretation of radon anomalies in seismotectonic and tectonic-gravitational settings: the south-eastern Crati graben (Northern Calabria, Italy). Tectonophysics 396:181–193

    Article  Google Scholar 

  • Tansi C, Muto F, Critelli S, Iovine G (2007) Neogene-Quaternary strike-slip tectonics in the central Calabrian arc (southern Italy). J Geodyn 43:393–414

    Article  Google Scholar 

  • Van Dijk JP, Bello M, Brancaleoni GP, Cantarella G, Costa V, Frixa A, Golfetto F, Merlini S, Riva M, Torricelli S, Toscano C, Zerilli A (2000) A regional structural model for the northern sector of the Calabrian Arc (southern Italy). Tectonophysics 324:267–320

    Article  Google Scholar 

  • Vaupotič J, Gregorič A, Kobal I, Žvab P, Kozak K, Mazur J, Kochowska E, Grzadziel D (2010) Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia. Nat Hazards Earth Syst Sci 10:895–899

    Article  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics: an introduction with applications. Springer, Berlin

    Book  Google Scholar 

  • Webster R, Oliver MA (2007) Geostatistics for environmental scientists, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Winkler R, Ruckerbauer F, Bunzl K (2001) Radon concentration in soil gas: a comparison of the variability resulting from different methods, spatial heterogeneity and seasonal fluctuations. Sci Total Environ 272:273–282

    Article  Google Scholar 

  • Wortel MJR, Spackman W (1993) The dynamic evolution of the Apenninic-Calabrian, Hellenic and Carpathian arcs: a unifying approach. Terra Nova Abstr. Suppl. 1(5):97

    Google Scholar 

  • Zhu HC, Charlet JM, Poffijn A (2001) Radon risk mapping in southern Belgium: an application of geostatistical and GIS techniques. Sci Total Environ 272(1–3):203–210

    Article  Google Scholar 

Download references

Acknowledgements

Soil-gas radon measurements were taken within the frame of the Ph.D. activities of one of the authors (A. Tallarico), under the supervision of Prof. G. Falcone. The complete data set of the soil-gas radon measurements can be accessed at http://www.area.cs.cnr.it/irpi-cs/en-us/attività/studiincorso/franedgpvtettonicaeradon.aspx. Authors greatly appreciated Referees’ comments and suggestions, that allowed to notably improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Iovine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iovine, G., Guagliardi, I., Bruno, C. et al. Soil-gas radon anomalies in three study areas of Central-Northern Calabria (Southern Italy). Nat Hazards 91 (Suppl 1), 193–219 (2018). https://doi.org/10.1007/s11069-017-2839-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-017-2839-x

Keywords

Navigation