Skip to main content
Log in

Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East Coast

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

We perform numerical simulations to assess how coastal tsunami hazard from submarine mass failures (SMFs) is affected by slide kinematics and rheology. Two types of two-layer SMF tsunami generation models are used, in which the bottom (slide) layer is depth-integrated and represented by either a dense Newtonian fluid or a granular flow, in which inter-granular stresses are governed by Coulomb friction (Savage and Hutter model). In both cases, the upper (water) layer flow is simulated with the non-hydrostatic 3D σ-layer model NHWAVE. Both models are validated by simulating laboratory experiments for SMFs made of glass beads moving down a steep plane slope. In those, we assess the convergence of results (i.e., SMF motion and surface wave generation) with model parameters and their sensitivity to slide parameters (i.e., viscosity, bottom friction, and initial submergence). The historical Currituck SMF is simulated with the viscous slide model, to estimate relevant parameters for simulating tsunami generation from a possible SMF sited near the Hudson River Canyon. Compared to a rigid slump, we find that deforming SMFs of various rheology, despite having a slightly larger initial acceleration, generate a smaller tsunami due to their spreading and thinning out during motion, which gradually makes them less tsunamigenic; the latter behavior is controlled by slide rheology. Coastal tsunami hazard is finally assessed by performing tsunami simulations with the Boussinesq long wave model FUNWAVE-TVD, initialized by SMF tsunami sources, in nested grids of increasing resolution. While initial tsunami elevations are very large (up to 25 m for the rigid slump), nearshore tsunami elevations are significantly reduced in all cases (to a maximum of 6.5 m). However, at most nearshore locations, surface elevations obtained assuming a rigid slump are up to a factor of 2 larger than those obtained for deforming slides. We conclude that modeling SMFs as rigid slumps provides a conservative estimate of coastal tsunami hazard while using a more realistic rheology, in general, reduces coastal tsunami impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abadie S, Morichon D, Grilli ST, Glockner S (2008) VOF/Navier-Stokes numerical modeling of surface waves generated by subaerial landslides. La Houille Blanche 1:21–26. doi:10.1051/lhb:2008001

    Article  Google Scholar 

  • Abadie S, Morichon D, Grilli ST, Glockner S (2010) Numerical simulation of waves generated by landslides using a multiple-fluid Navier–Stokes model. Coast Eng 57:779–794. doi:10.1016/j.coastaleng.2010.03.003

    Article  Google Scholar 

  • Abadie S, Harris JC, Grilli ST, Fabre R (2012) Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): tsunami source and near field effects. J Geophys Res 117:C05030. doi:10.1029/2011JC007646

    Article  Google Scholar 

  • Assier-Rzadkiewicz S, Mariotti C, Heinrich P (1997) Numerical simulation of submarine landslides and their hydraulic effects. J Waterw Port Coast Ocean Eng 123:149–157

    Article  Google Scholar 

  • Ataie-Ashtiani B, Najafi-Jilani A (2006) Prediction of submerged landslide generated waves in dam reservoirs: an applied approach. Dam Eng 17(3):135–155

    Google Scholar 

  • Ataie-Ashtiani B, Najafi-Jilani A (2007) A higher-order Boussinesq-type model with moving bottom boundary: applications to submarine landslide tsunami waves. Int J Numer Meth Fluid 53(6):1019–1048. doi:10.1002/fld.1354

    Article  Google Scholar 

  • Ataie-Ashtiani B, Nik-khah A (2008) Impulsive waves caused by subaerial landslides. Environ Fluid Mech 8(3):263–280. doi:10.1007/s10652-008-9074-7

    Article  Google Scholar 

  • Ataie-Ashtiani B, Najafi-Jilani A (2008) Laboratory investigations on impulsive waves caused by underwater landslide. Coast Eng 55(12):989–1004. doi:10.1016/j.coastaleng.2008.03.003

    Article  Google Scholar 

  • Ataie-Ashtiani B, Shobeyri G (2008) Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. Intl J Num Meth Fluids 56(2):209–232

    Article  Google Scholar 

  • Barkan R, ten Brick US, Lin J (2009) Far field tsunami simulations of the 1755 Lisbon earthquake: implication for tsunami hazard to the US East Coast and the Caribbean. Mar Geol 264:109–122

    Article  Google Scholar 

  • Bouchut F, Fernández-Nieto ED, Mangeney A, Narbona-Reina G (2016) A two-phase two-layer model for fluidized granular flows with dilatancy effects. J Fluid Mech 801:166–221. doi:10.1017/jfm.2016.417

    Article  Google Scholar 

  • Chaytor J, ten Brink US, Solow J, Andrews BD (2009) Size distribution of submarine landslides along the U.S. Atlantic Margin. Mar Geol 264:16–27

    Article  Google Scholar 

  • Day SJ, Watts P, Grilli ST, Kirby JT (2005) Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami. Mar Geol 215:59–92. doi:10.1016/j.margeo.2004.11.008

    Article  Google Scholar 

  • Day SJ, Llanes P, Silver E, Hoffmann G, Ward SN, Driscoll N (2015) Submarine landslide deposits of the historical lateral collapse of Ritter Island, Papua New Guinea. Mar Petrol Geol 67:419–438

    Article  Google Scholar 

  • De Blasio FV, Engvik L, Harbitz CB, Elverhøi A (2004) Hydroplaning and submarine debris flows. J Geophys Res 109. doi:10.1029/2002JC001714

    Google Scholar 

  • Eilers H (1941) Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration. Kolloid-Zeitschrift 97(3):313–321

    Article  Google Scholar 

  • Enet F, Grilli ST, Watts P (2003) Laboratory experiments for tsunamis generated by underwater landslides: comparison with numerical modeling. In Proceedings of 13th offshore and polar engineering conference (ISOPE03, Honolulu, USA, May 2003), pp 372–379

  • Enet F, Grilli ST (2007) Experimental study of tsunami generation by three-dimensional Rigid underwater landslides. J Waterw Port Coast Ocean Eng 133(6):442–454

    Article  Google Scholar 

  • Fernández-Nieto ED, Bouchut F, Bresch D, Castro Diaz MJ, Mangeney A (2008) A new Savage-Hutter type model for submarine avalanches and generated tsunami. J Comp Phys 227:7720–7754

    Article  Google Scholar 

  • Fine IV, Rabinovich AB, Bornhold BD, Thomson R, Kulikov EA (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215:45–57

    Article  Google Scholar 

  • Fine IV, Rabinovich AB, Kulikov EA et al (1998) Numerical modelling of landslide generated tsunamis with application to the Skagway Harbor tsunami of November 3, 1994. Proceedings of international conference on Tsunamis, Paris, pp 211–223

  • Fritz HM, Hager WH, Minor H-E (2001) Lituya bay case: rock slide impact and wave runup. Sci Tsunami Hazards 19:3–22

    Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2004) Nearfield characteristics of landslide generated impulse waves. J Waterw Port Coast Ocean Eng 130:287–302

    Article  Google Scholar 

  • Fuhrman DR, Madsen PA (2009) Tsunami generation, propagation, and run-up with a high-order Boussinesq model. Coast Eng 56:747–758. doi:10.1016/j.coastaleng.2009.02.004

    Article  Google Scholar 

  • Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T (2011) Tsunami source of the 2011 off the Pacific coast of Tohoku, Japan earthquake. Earth Planets Space 63:815–820

    Article  Google Scholar 

  • Frankel NA, Acrivos A (1967) On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci 22(847–853):1016. doi:10.1016/0009-2509(67)80149-0

    Google Scholar 

  • Fryer GJ, Watts Ph, Pratson LF (2004) Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc. Mar Geol 203:201–218

    Article  Google Scholar 

  • Geist E, Lynett P, Chaytor J (2009) Hydrodynamic modeling of tsunamis from the Currituck landslide. Mar Geol 264:41–52. doi:10.1016/j.margeo.2008.09.005

    Article  Google Scholar 

  • Glicken H (1996) Rockslide-Debris Avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. USGS Open-file Report 96-677, US Geological Survey, Reston

  • Glimsdal S, Pedersen GK, Harbitz CB, Løvholt F (2013) Dispersion of tsunamis: does it really matter? Nat Hazards Earth Syst Sci 13:1507–1526. doi:10.5194/nhess-13-1507-2013

    Article  Google Scholar 

  • Grilli ST, Ioualalen M, Asavanant J, Shi F, Kirby JT, Watts P (2007) Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami. J Waterw Port Coast Ocean Eng 33:414–428

    Article  Google Scholar 

  • Grilli ST, Dias, F Guyenne, P Fochesato C and F Enet (2010a) Progress In fully nonlinear potential flow modeling of 3D extreme ocean waves. Chapter 3 in Advances in Numerical Simulation of Nonlinear Water Waves (ISBN: 978-981-283-649-6, edited by Q.W. Ma) (Vol. 11 in Series in Advances in Coastal and Ocean Engineering). World Scientific Publishing Co. Pte. Ltd., pp. 75–128

  • Grilli ST, Dubosq S, Pophet N, Pérignon Y, Kirby JT, Shi F (2010) Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Nat Hazards Earth Syst Sci 10:2109–2125. doi:10.5194/nhess-2109-2010

    Article  Google Scholar 

  • Grilli ST, Harris JC, Tajalibakhsh T, Masterlark TL, Kyriakopoulos C, Kirby JT, Shi F (2013) Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far- and near-field observations. Pure Appl Geophys 170:1333–1359. doi:10.1007/s00024-012-0528-y

    Article  Google Scholar 

  • Grilli ST, O’Reilly C, Harris JC, Tajalli-Bakhsh T, Tehranirad B, Banihashemi S, Kirby JT, Baxter CDP, Eggeling T, Ma G, Shi F (2015a) Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City. MD Nat Hazards 76(2):705–746. doi:10.1007/s11069-014-1522-8

    Article  Google Scholar 

  • Grilli ST, Grilli AR, Tehranirad B and JT Kirby (2015b) Modeling tsunami sources and their propagation in the Atlantic Ocean for coastal tsunami hazard assessment and inundation mapping along the US East Coast. In Proceedings of 2015 COPRI solutions to coastal disasters conference, (Boston, USA. September 9–11, 2015), American Soc Civil Eng (in press)

  • Grilli ST, Taylor O-DS, Baxter CDP, Maretzki S (2009) Probabilistic approach for determining submarine landslide tsunami hazard along the upper East Coast of the United States. Mar Geol 264(1–2):74–97

    Article  Google Scholar 

  • Grilli ST, Vogelmann S, Watts P (2002) Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Eng Anal Bound Elem 26(4):301–313

    Article  Google Scholar 

  • Grilli ST, Watts P (1999) Modeling of waves generated by a moving submerged body. Applications to underwater landslides. Eng Anal Bound Elem 23:645–656

    Article  Google Scholar 

  • Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure, I: modeling, experimental validation, and sensitivity analyses. J Waterw Port Coast Ocean Eng 131(6):283–297

    Article  Google Scholar 

  • Harbitz CB (1992) Model simulations of tsunamis generated by the Storegga slides. Mar Geol 105:1–21

    Article  Google Scholar 

  • Harbitz C, Pedersen G, Gjevik B (1993) Numerical simulations of large water waves due to landslides. J Hydraul Eng 119:1325–1342

    Article  Google Scholar 

  • Heinrich P (1992) Nonlinear water waves generated by submarine and aerial landslides. J Waterw Port Coast Ocean Eng 118:249–266

    Article  Google Scholar 

  • Heller V, Hager WH (2010) Impulse product parameter in landslide generated impulse waves. J Waterw Port Coastal Ocean Eng. 136:145155

    Article  Google Scholar 

  • Horrillo J, Wood A, Kim GB, Parambath A (2013) A simplified 3-D Navier–Stokes numerical model for landslide-tsunami: application to the Gulf of Mexico. J Geophys Res 118:6934–6950. doi:10.1002/2012JC008689

    Article  Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JF (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7:221–238

    Article  Google Scholar 

  • Imran J, Parker G, Locat J, Lee H (2001) 1D numerical model of muddy subaqueous and subaerial debris flow. J Hyd Eng ASCE 127(11):959–968

    Article  Google Scholar 

  • Ioualalen M, Asavanant J, Kaewbanjak N, Grilli ST, Kirby JT, Watts P (2007) Modeling the 26th December 2004 Indian Ocean tsunami: case study of impact in Thailand. J Geophys Res 112:C07024. doi:10.1029/2006JC003850

    Article  Google Scholar 

  • Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. J Geophys Res 106:537–552

    Article  Google Scholar 

  • Jiang L, LeBlond PH (1992) The coupling of a submarine slide and the surface waves which it generates. J Geophys Res 97(C8):12731–12744

    Article  Google Scholar 

  • Jiang L, Leblond PH (1993) Numerical modeling of an underwater Bingham plastic mudslide and the waves which it generates. J Geophys Res 98:10303–310317

    Article  Google Scholar 

  • Kirby JT, Shi F, Tehranirad B, Harris JC, Grilli ST (2013) Dispersive tsunami waves in the ocean: model equations and sensitivity to dispersion and Coriolis effects. Ocean Modell 62:39–55. doi:10.1016/j.ocemod.2012.11.009

    Article  Google Scholar 

  • Kirby JT, Shi F, Nicolsky D, Misra S (2016) The 27 April 1975 Kitimat, British Columbia submarine landslide tsunami: a comparison of modeling approaches. Landslides 2016: doi:10.1007/s10346-016-0682-x (published online Feb. 26)

  • Liu PL-F, Wu T-R, Raichlen F, Synolakis CE, Borrero JC (2005) Runup and rundown generated by three-dimensional masses. J Fluid Mech 536:107–144

    Article  Google Scholar 

  • Locat J, Lee H, ten Brink US, Twichell D, Geist E, Sansoucy M (2009) Geomorphology, stability and mobility of the Currituck slide. Mar Geol 264:28–40

    Article  Google Scholar 

  • Løvholt F, Pedersen G, Gisler G (2008) Oceanic propagation of a potential tsunami from the La Palma Island. J Geophys Res 113:C09026

    Article  Google Scholar 

  • Lynett P, Liu PL-F (2002) A numerical study of submarine landslide generated waves and runup. Proc R Soc Lond A458:2885–2910

    Article  Google Scholar 

  • Lynett P, Liu PL-F (2005) A numerical study of the run-up generated by three-dimensional landslides. J Geophys Res 110:C03006. doi:10.1029/2004JC002443

    Article  Google Scholar 

  • Ma G, Shi F, Kirby JT (2012) Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model 43–44:22–35

    Article  Google Scholar 

  • Ma G, Kirby JT, Shi F (2013) Numerical simulation of tsunami waves generated by deformable submarine landslides. Ocean Model 69:146–165

    Article  Google Scholar 

  • Ma G, Kirby JT, Hsu TJ, Shi F (2015) A two-layer granular landslide model for tsunami wave generation: theory and computation. Ocean Model 93:40–55

    Article  Google Scholar 

  • Maeno F, Imamura F (2011) Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia. J Geophys Res 116(B9)

  • McFall BC, Fritz HM (2016) Physical modeling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes. Proc R Soc Lond A 472(2188):20160052

    Article  Google Scholar 

  • McMurtry GM, Tappin DR, Sedwick PN, Wilkinson I, Fietzke J, Sellwood B (2007) Elevated marine deposits in Bermuda record a late quaternary megatsunami. Sediment Geol 200(3–4):155–165. doi:10.1016/j.sedgeo.2006.10.009

    Article  Google Scholar 

  • Mendoza CI, Santamara-Holek I (2009) The rheology of hard sphere suspensions at arbitrary volume fractions: an improved differential viscosity model. J Chem Phys 130(4):044904. doi:10.1063/1.3063120

    Article  Google Scholar 

  • Mohammed F, Fritz HM (2012) Physical modeling of tsunami generated by three-dimensional deformable granular landslides. J Geophys Res 117:C11015

    Article  Google Scholar 

  • Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian Ridge. J Geophys Res 94:17,465–17,484

    Article  Google Scholar 

  • Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. Proc R Soc Lond A466(2116):1201–1228. doi:10.1098/rspa.2009.0445

    Article  Google Scholar 

  • Murty TS (1979) Submarine slide-generated water waves in Kitimat Inlet, British Columbia. J Geophys Res 84(C12):7,777–7,77

    Article  Google Scholar 

  • Najafi-Jilani A, Ataie-Ashtiani B (2008) Estimation of near-field characteristics of tsunami generation by submarine landslide. Ocean Eng 35(5–6):545–557. doi:10.1016/j.oceaneng.2007.11.006

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half space. Bull Seismol Soc Am 75(4):1135–1154

    Google Scholar 

  • Piper DJW, Cochonat P, Morrison ML (1999) The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of the debris flows and turbidity current inferred from side scan sonar. Sedimentology 46:79–97

    Article  Google Scholar 

  • Prior DP, Doyle EH, Neurauter T (1986) The Currituck Slide, Mid Atlantic continental slope-revisited. Mar Geol 73:25–45

    Article  Google Scholar 

  • Quemada D (1977) Rheology of concentrated disperse systems and minimum energy dissipation principle. Rheol Acta 16:82–94. doi:10.1007/BF01516932

    Article  Google Scholar 

  • Ramalho RS, Winckler G, Madeira J, Helffrich GR, Hiplito A, Quartau R, Adena K, Schaefer JM (2015) Hazard potential of volcanic flank collapses raised by new megatsunami evidence. Sci Adv 1(9):e1500456

    Article  Google Scholar 

  • Romano F, Piatanesi A, Lorito S, D’Agostino N, Hirata K, Atzori S, Yamazaki Y, Cocco M (2012) Clues from joint inversion of tsunami and geodetic data of the 2011 Tohoku-oki earthquake. Sci Rep 2:385. doi:10.1038/srep00385

    Article  Google Scholar 

  • Satake K, Fujii Y, Harada T, Namegaya Y (2013) Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bull Seismol Soc Am 103:14731492

    Article  Google Scholar 

  • Schnyder JSD, Eberli GP, Kirby JT, Shi F, Tehranirad B, Mulder T, Ducassou E, Hebbeln d, Wintersteller P (2016) Tsunamis caused by submarine slope failures along western Great Bahama Bank. Sci Rep (Nature) 6:35925. doi:10.1038/srep35925

    Article  Google Scholar 

  • Shelby M, Grilli ST, Grilli AR (2016) Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami tide simulations. Pure Appl Geophys. doi:10.1007/s00024-016-1315-y

    Google Scholar 

  • Shi F, Kirby JT, Harris JC, Geiman JD, Grilli ST (2012) A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model 43–44:36–51. doi:10.1016/j.ocemod.2011.12.004

    Article  Google Scholar 

  • Song C, Wang P, Makse HA (2008) A phase diagram for jammed matter. Nature 453(7195):629632. doi:10.1038/nature06981

    Article  Google Scholar 

  • Tappin DR, Watts P, McMurtry GM, Lafoy Y, Matsumoto T (2001) The Sissano, Papua New Guinea tsunami of July 1998-offshore evidence on the source mechanism. Mar Geol 175:1–23

    Article  Google Scholar 

  • Tappin DR, Watts P, Grilli ST (2008) The Papua New Guinea tsunami of 1998: anatomy of a catastrophic event. Nat Hazards Earth Syst Sci 8:243–266

    Article  Google Scholar 

  • Tappin DR, Grilli ST, Harris JC, Geller RJ, Masterlark T, Kirby JT, Shi F, Ma G, Thingbaijamg KKS, Maig PM (2014) Did a submarine landslide contribute to the 2011 Tohoku tsunami ? Mar Geol 357:344–361. doi:10.1016/j.margeo.2014.09.043

    Article  Google Scholar 

  • Tehranirad B, Harris JC, Grilli AR, Grilli ST, Abadie S, Kirby JT, Shi F (2015) Far-field tsunami hazard in the north Atlantic basin from large scale flank collapses of the Cumbre Vieja volcano, La Palma. Pure Appl Geophys 172(12):3,589–3,616. doi:10.1007/s00024-015-1135-5

    Article  Google Scholar 

  • ten Brink U, Twichell D, Geist E, Chaytor J, Locat J, Lee H, Buczkowski B, Barkan R, Solow A, Andrews B, Parsons T, Lynett P, Lin J, and M Sansoucy (2008) Evaluation of tsunami sources with the potential to impact the U.S. Atlantic and Gulf coasts. USGS Administrative report to the U.S. Nuclear Regulatory Commission

  • ten Brink US, Lee HJ, Geist EL, Twichell D (2009a) Assessment of tsunami hazard to the U.S. East Coast using relationships between submarine landslides and earthquakes. Mar Geol 264:65–73

    Article  Google Scholar 

  • ten Brink US, Barkan R, Andrews BD, Chaytor JD (2009b) Size distributions and failure initiation of submarine and subaerial landslides. Earth Planet Sci Lett 287:31–42

    Article  Google Scholar 

  • ten Brink US, Chaytor JD, Geist EL, Brothers DS, Andrews BD (2014) Assessment of tsunami hazard to the U.S. Atlantic margin. Mar Geol 353:31–54

    Article  Google Scholar 

  • Tinti S, Manucci A, Pagnoni G, Armigliato A, Zaniboni F (2005) The 30th December 2002 landslide-induced tsunami in Stromboli: sequence of the events reconstructed from eyewitness accounts. Nat Hazards Earth Syst Sci 5:763–775

    Article  Google Scholar 

  • Twichell DC, Chaytor JB, ten Brink US, Buczkowski (2009) Morphology of late quaternary submarine landslides along the U.S. Atlantic Continental Margin. Mar Geol 264:4–15

    Article  Google Scholar 

  • Viesca RC, Rice JR (2010) Modeling slope instability as shear rupture propagation in a saturated porous medium. In: Mosher DC, Shipp C, Moscardelli L, Chaytor J, Baxter C, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences IV. Springer, Heidelberg, pp 215–225

    Google Scholar 

  • Viesca RC, Rice JR (2012) Nucleation of slip-weakening rupture instability in landslides by localized increase of pore pressure. J Geophys Res. doi:10.1029/2011JB008866

    Google Scholar 

  • Von Huene R, Kirby S, Miller J, Dartnell P (2014) The destructive 1946 Unimak near? Field tsunami: new evidence for a submarine slide source from reprocessed marine geophysical data. Geophys Res Lett 41(19):6811–6818

    Article  Google Scholar 

  • Viroulet S, Cébron D, Kimmoun O, Kharif C (2013) Shallow water waves generated by subaerial solid landslides. Geophys J Intl 193(2):747–762

    Article  Google Scholar 

  • Viroulet S, Sauret A, Kimmoun O (2014) Tsunami generated by granular collapse down a rough inclined plane. Eur Phys Lett. doi:10.1209/0295-5075/105/34004

    Google Scholar 

  • Ward SN, Day S (2001) Cumbre Vieja VolcanoPotential collapse and tsunami at La Palma, Canary Islands. Geophys Res Lett 28:3397–3400. doi:10.1029/2001GL013110

    Article  Google Scholar 

  • Ward SN, Day S (2003) Ritter Island volcanolateral collapse and the tsunami of 1888. Geophys J Int 154(3):891–902

    Article  Google Scholar 

  • Watts P and ST Grilli (2003) Underwater landslide shape, motion, deformation, and tsunami generation. In: Proc 13th ISOPE, Honolulu, pp 364–371

  • Watts P, Grilli ST, Kirby JT, Fryer GJ, Tappin DR (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat Hazards Earth Syst Sci 3:391–402

    Article  Google Scholar 

  • Watts P, Grilli ST, Tappin DR, Fryer G (2005) Tsunami generation by submarine mass failure, II: predictive equations and case studies. J Waterw Port Coast Ocean Eng 131(6):298–310

    Article  Google Scholar 

  • Wei G, Kirby JT, Grilli ST, Subramanya R (1995) A fully nonlinear Boussinesq model for free surface waves. Part I: highly nonlinear unsteady waves. J Fluid Mech 294:71–92

    Article  Google Scholar 

  • Wei Y, Newman A, Hayes G, Titov V, Tang L (2014) Tsunami forecast by joint inversion of real-time tsunami waveforms and seismic or GPS Data: application to the Tohoku 2011 tsunami. Pure Appl Geophys 171(12):3281–3305

    Article  Google Scholar 

  • Weiss R, Fritz HM, Wünnemann K (2009) Hybrid modeling of the mega-tsunami runup in Lituya Bay after half a century. Geophys Res Lett. doi:10.1029/2009GL037814

    Google Scholar 

  • WRAPUP-2 (2011) Japan quake’s economic impact worse than first feared. Reuters, published/accessed 14 April 2011. http://www.reuters.com/article/japan-economy-idUSL3E7FC09220110412

  • Yavari-Ramshe S, Ataie-Ashtiani B (2015) A rigorous finite volume model to simulate subaerial and submarine landslide generated waves. Landslides. doi:10.1007/s10346-015-0662-6

    Google Scholar 

  • Yavari-Ramshe S, B Ataie-Ashtiani (2016) Numerical simulation of subaerial and submarine landslide generated tsunami waves - Recent advances and future challenges. Landslides, 44 pps., doi:10.1007/s10346-016-0734-2 (published online 8/3/16)

Download references

Acknowledgements

SG, JK, and GM acknowledge support from grant CMMI-15-35568 of the United States (US) National Science Foundation (NSF), Engineering for Natural Hazard program; SG, MS, JK, and FS from grant NA-15-NWS-4670029 of the National Tsunami Hazard Mitigation Program (NTHMP) from the US Department of Commerce/National Oceanic at Atmospheric Administration (NOAA). DN’s research in this publication was sponsored by the State of Alaska and also by the University of Alaska Fairbanks Cooperative Institute for Alaska Research, with funds from NOAA under cooperative agreement NA-08-OAR-4320751 with the University of Alaska. This does not constitute an endorsement by NOAA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphan T. Grilli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grilli, S.T., Shelby, M., Kimmoun, O. et al. Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East Coast. Nat Hazards 86, 353–391 (2017). https://doi.org/10.1007/s11069-016-2692-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2692-3

Keywords

Navigation