Skip to main content
Log in

Improving landslide hazard and risk mapping in Guatemala using terrain aspect

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Guatemala is in the path of numerous atmospheric hazards that trigger landslides by saturating mountain slopes with water reducing their safety factor. Available local studies of landslide characterization in Guatemala have indicated the importance of slope in hazard and risk mapping, but, for the most part, ignored another topographic index: aspect. However, many regional studies analyzing the effect of hurricanes on terrain show that Caribbean and Central American locations experience higher impact from hurricanes and storms on eastern, southeastern, southern and southwestern slopes. Since hazard and risk mapping focuses on infrastructure and settlements located on slopes with various orientations, this factor needs to be addressed. This study uses landslide data from three areas in Guatemala affected by hurricanes Stan (2005) and Mitch (1998). The results from the conducted spatial and statistical analyses show a high association of landslide prone slopes with aspect within the 76 to 260 range (i.e., eastern–southeastern–southern and southwestern slopes). We hypothesize that this is the result of the regional wind circulation pattern governing moisture distribution. Integrating aspect in landslide analysis may improve hazard and risk mapping in Guatemala and other Central American and Caribbean regions by taking into account the regional patterns of wind circulation and the dominant role of eastern–southeastern–southwestern slopes in landslide processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbott PL (2008) Natural disasters. McGraw Hill, New York

    Google Scholar 

  • Alvarez LN, Cobo VM (2012) Guía metodológica para la elaboración de mapas de susceptibilidad a movimientos de ladera en la cuenca del Lago Atitlán (Guatemala.) Con el apoyo financiero de la Agencia Española de Cooperación Internacional para el Desarrollo (AECID)

  • Asociación Vivamos Mejor (2006) Caracterizacion geotematica de la microcuenca de Tzojoma (Guatemala)

  • Bucknam RC, Coe JA, Chavarría MM, Godt JW, Tarr AC, Bradle L, Rafferty S, Hancock D, Dart RL, Johnson ML (2001) Landslides triggered by Hurricane Mitch in Guatemala—inventory and discussion. Open-File Report 01-443. USGS

  • Burchfiel P (2012) Visualizing Landslide Hazards: Methods for Empowering Communities in Guatemala through Hazard Mapping. Master Thesis. San Jose State University

  • Burnett BN, Meyer GA, McFadden LD (2008) Aspect-related microclimatic influences on slope forms and processes, northeastern Arizona. J Geophys Res 113:F03002. doi:10.1029/2007JF000789

    Google Scholar 

  • Chinea JD (1980) The forest vegetation of the limestone hills of northern Puerto Rico. Master Thesis, Cornell University

  • Cobin PF (2013) Probabilistic modeling of rainfall induced landslide hazard assessment in San Juan la Laguna, Sololá, Guatemala. Master’s report, Michigan Technological University, 2013. http://digitalcommons.mtu.edu/etds/700. Accessed 20 Sept 2015

  • Coe JA, Godt JW, Baum RL, Bucknam RC, Michael JA (2004) Landslide susceptibility from topography in Guatemala. In: Lacerda WA, Ehrlich M, Fontura SAB, Sayão ASF (eds) Landslides: evaluation and stabilization, vol 1, Taylor and Francis Group, London, pp 69–78

  • CONRED (2005) Caracterización de los flujos de lodo y escombros que afectaron la cabecera municipal de Santiago Atitlán (Sololá) en Octubre de 2005. Report by Coordinadora Nacional Para Reducción de Desastres

  • CONRED (2014) Evaluación de Condiciones de Susceptibilidad a Desastres de la Antigua Santa Catarina Ixtahuacán Aldeas y Caseríos Vecinos; Departamento de Sololá. Report by Coordinadora Nacional Para Reducción de Desastres

  • Cordillera SA (2007) Informe final Diagnóstico de Riesgos por deslizamientos y Flujo de detritos en Santiago Atitlán, Sololá

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42(3–4):213–228

    Article  Google Scholar 

  • Devoli G, Strauch W, Chávez G, Høeg K (2011) A landslide database for Nicaragua: a tool for landslide-hazard management. Landslides 4:163–176

    Article  Google Scholar 

  • FEMA (2005) Appendix G. https://www.fema.gov/ar/media-library/assets/documents/20942. Accessed 20 Sept 2015

  • Gorokhovich Y, Voustianiouk A (2006) Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sens Environ 104(4):409–415

    Article  Google Scholar 

  • Hirano A, Welch R, Lang H (2003) Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS J Photogramm Remote Sens 57(5–6):356–370

    Article  Google Scholar 

  • IPGARAMSS (2008) Manual metodologico, para la evaluacion de movimientos de ladera en el AMSS (El Salvador, CA). Financiado por la Union Europa, AECID, Ayuntamiento de Barcelona, Area Metropolitana de Barcelona, Diputacion de Barcelona. Ejecutado por OPAMSS, COAMSS y Geologos del Mundo

  • Istanbulluoglu E, Yetemen O, Vivoni ER, Gutierrez-Jurado HA, Bras RL (2008) Eco-geomorphic implications of Hillslope aspect: inferences from analysis of landscape morphology in central New Mexico. Geophys Res Lett 35:L14403. doi:10.1029/2008GL034477

    Article  Google Scholar 

  • Lugo-Pérez J, Sabat-Guérnica AM (2011) Structure and composition of woody plants in urban forest remnants with different adjacent land-use and slope aspect. Urban Ecosyst 14(1):45–58

    Article  Google Scholar 

  • Medina BY (2007) Deslizamientos e impactos ambientales de los huracanes Mitch y Stan, en Guatemala. Jornadas Internacionales sobre Gestión del Riesgo de Inundaciones y Deslizamientos de Laderas. Brasil. Mayo 2007. http://hercules.cedex.es/hidraulica/prohimet/Br07/Comunicaciones/Medina.pdf. Last time accessed Jan 2015

  • Miller C, Gibbons M, Beatty K, Boissonnade A (2013) Topographic speed-up effects and observed roof damage on Bermuda following Hurricane Fabian (2003). Weather Forecast 28:159–174

    Article  Google Scholar 

  • Perotto-Baldiviezo H, Thurow T, Smith CT, Fisher RF, Wu XB (2004) GIS-based spatial analysis and modeling for landslide hazard assessment in steeplands, southern Honduras. Agric Ecosyst Environ 103(1):165–176

    Article  Google Scholar 

  • Portig WH (1965) Central American rainfall. Geogr Rev 55(1):68–90

    Article  Google Scholar 

  • Poulos MJ, Pierce JL, Flores AN, Benner SG (2012) Hillslope asymmetry maps reveal widespread, multi-scale organization. Geophys Res Lett 39:L06406. doi:10.1029/2012GL051283

    Article  Google Scholar 

  • Rivera LW, Aide TM (1998) Forest recovery in the karst region of Puerto Rico. For Ecol Manag 108:63–75

    Article  Google Scholar 

  • Rowe M (2003) Roof damage by hurricane force winds in Bermuda—the Fabian experience. Dept. of Environmental Protection, Government of Bermuda

    Google Scholar 

  • Thompson DA (1983) Effects of hurricane Allen on some Jamaican forests. Commonwealth For Rev 62(2), (191), 107–115

  • Unidas Naciones (2005) Efectos en Guatemala de las L=lluvias=torrenciales y la tormenta tropical Stan. NU. CEPAL. Subsede de Mexico, Corporate author, p 121

    Google Scholar 

Download references

Acknowledgments

This work was carried out with the aid of a grant from the Inter-American Institute for Global Change Research (IAI) [TISGII-PDS2014] which is supported by the US National Science Foundation (Grant GEO-1143506). We thank our collaborators from the Asociación Vivamos Mejor in Guatemala for their help with the field work and data used in this manuscript and are grateful to Dr. Stefan Becker for his help in understanding wind data and hurricane circulation. We are also thankful to the staff from NASA for their guidance and information about wind data and their assistance selecting datasets for this study. The comments from anonymous reviewers greatly improved the paper structure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Gorokhovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorokhovich, Y., Machado, E.A., Melgar, L.I.G. et al. Improving landslide hazard and risk mapping in Guatemala using terrain aspect. Nat Hazards 81, 869–886 (2016). https://doi.org/10.1007/s11069-015-2109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-2109-8

Keywords

Navigation