Skip to main content

Advertisement

Log in

Evaluation of land subsidence from underground coal mining using TimeSAR (SBAS and PSI) in Springfield, Illinois, USA

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

We used advanced radar interferometry time-series analysis methods, persistent scatterer interferometry and small baseline subset, to delineate areas of ground deformation related to underground coal mining in Springfield, Illinois, USA, and to measure the temporal pattern of deformation. Two satellite radar systems were used: the European Remote Sensing satellites (ERS-1/2) covered a period from June 14, 1992 to August 30, 2000 and the Phased Array type L-band synthetic aperture radar (PALSAR) onboard the Advanced Land Observation Satellite (ALOS) covered from June 18, 2007 to February 11, 2011. Results from ERS-1/2 processing showed several areas in Springfield subsiding. ALOS PALSAR, however, appears to overestimate deformation, probably because of large baselines and the limited number of images. Many of these areas are likely the result of collapse of underground mine workings and are consistent with reported incidents of past mine subsidence. The maximum deformation rate attributed to mine subsidence for the period from 1992 to 2000 was up to about −4.1 mm/year, while for the period from 2007 to 2011 the rate was up to about −35.9 mm/year. In addition, we discovered a railroad right-of-way south of Springfield that had subsided at a rate of about 3 mm/year during the 1992–2000 period. The measurements of both ERS-1/2 and ALOS PALSAR are consistent with on-the-ground survey data taken from November 29, 1989 to April 23, 2008. Our study has revealed several locations of subsidence likely caused by the collapse of abandoned underground mine workings. Also, the unexpected discovery of ground surface displacement of the railroad right-of-way reveals one of the advantages of satellite-based monitoring, namely discovering unknown deformation areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bauer RA (2006) Mine subsidence in Illinois: facts for homeowners. Circular 569, Illinois State Geological Survey, Champaign, Illinois

  • Bauer RA (2008) Planned coal mine subsidence in Illinois: a public information booklet. Circular 573, Illinois State Geological Survey, Champaign, Illinois

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote 40:2375–2383. doi:10.1109/Tgrs.2002.803792

    Article  Google Scholar 

  • Calò F, Ardizzone F, Castaldo R, Lollino P, Tizzani P, Guzzetti F, Lanari R, Angeli M-G, Pontoni F, Manunta M (2014) Enhanced landslide investigations through advanced DInSAR techniques: the Ivancich case study, Assisi, Italy. Remote Sens Environ 142:69–82. doi:10.1016/j.rse.2013.11.003

    Article  Google Scholar 

  • Carnec C, Massonnet D, King C (1996) Two examples of the use of SAR interferometry on displacement fields of small spatial extent. Geophys Res Lett 23:3579–3582. doi:10.1029/96gl03042

    Article  Google Scholar 

  • Chatterjee RS, Fruneau B, Rudant JP, Roy PS, Frison PL, Lakhera RC, Dadhwal VK, Saha R (2006) Subsidence of Kolkata (Calcutta) City, India during the 1990s as observed from space by differential synthetic aperture radar interferometry (D-InSAR) technique. Remote Sens Environ 102:176–185. doi:10.1016/J.Rse.02.006

    Article  Google Scholar 

  • Chenoweth CA, Bargh MH, Treworgy CG (2009) Directory of coal mines in Illinois 7.5-minute quadrangle series: Springfield East and West Quadrangles Sangamon County. Illinois State Geological Survey Champaign, Illinois

  • Costantini M (1998) A novel phase unwrapping method based on network programming. IEEE Trans Geosci Remote 36:813–821

    Article  Google Scholar 

  • Cuenca MC, Hooper AJ, Hanssen RF (2013) Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radar interferometry. J Appl Geophys 88:1–11. doi:10.1016/j.jappgeo.2012.10.003

    Article  Google Scholar 

  • DeMaris PJ, Bauer RA (1983) Identification of mine subsidence on aerial photographs in central Illinois. ISGS Contract/Grant Report 1983-7, Illinois State Geological Survey, Champaign, Illinois

  • Elliott JR, Copley AC, Holley R, Scharer K, Parsons B (2013) The 2011 Mw 7.1 Van (Eastern Turkey) earthquake. J Geophys Res-Sol Earth 118:1619–1637. doi:10.1002/Jgrb.50117

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote 38:2202–2212. doi:10.1109/36.868878

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote 39:8–20. doi:10.1109/36.898661

    Article  Google Scholar 

  • Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25:4035–4038. doi:10.1029/1998gl900033

    Article  Google Scholar 

  • Guéguen Y, Deffontaines B, Fruneau B, Al Heib M, de Michele M, Raucoules D, Guise Y, Planchenault J (2009) Monitoring residual mining subsidence of Nord/Pas-de-Calais coal basin from differential and Persistent Scatterer Interferometry (Northern France). J Appl Geophys 69:24–34. doi:10.1016/j.jappgeo.2009.02.008

    Article  Google Scholar 

  • Gutierrez F, Galve JP, Lucha P, Castaneda C, Bonachea J, Guerrero J (2011) Integrating geomorphological mapping, trenching, InSAR and GPR for the identification and characterization of sinkholes: a review and application in the mantled evaporite karst of the Ebro Valley (NE Spain). Geomorphology 134:144–156. doi:10.1016/J.Geomorph.01.018

    Article  Google Scholar 

  • Hansel AK, Johnson WH (1996) Wedron and Mason groups: lithostratigraphic reclassification of deposits of the Wisconsin Episode, Lake Michigan Lobe Area. Bulletin 104, Illinois State Geological Survey, Champaign, Illinois

  • Hooper A, Zebker HA (2007) Phase unwrapping in three dimensions with application to InSAR time series. J Opt Soc Am A 24:2737–2747. doi:10.1364/Josaa.24.002737

    Article  Google Scholar 

  • Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:L23611. doi:10.1029/2004gl021737

    Google Scholar 

  • Jones CE, Blom RG (2013) Bayou Corne, Louisiana, sinkhole: precursory deformation measured by radar interferometry. Geology 42:111–114. doi:10.1130/g34972.1

    Article  Google Scholar 

  • Kolata DR (2005) Bedrock geology of Illinois. Illinois Map 14, Illinois State Geological Survey, Champaign, Illinois, 1:500 000, 1 sheet

  • Korose CP, Louchios AG, Elrick SD (2009) The proximity of underground mines to urban and developed lands in Illinois. Circular 575, Illinois State Geological Survey, Champaign, Illinois

  • Lauknes TR, Shanker AP, Dehls JF, Zebker HA, Henderson IHC (2010) Larsen Y (2010) Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sens Environ 114:2097–2109. doi:10.1016/J.Rse.04.015

    Article  Google Scholar 

  • Li SS, Benson C, Gens R, Lingle C (2008) Motion patterns of Nabesna Glacier (Alaska) revealed by interferometric SAR techniques. Remote Sens Environ 112:3628–3638. doi:10.1016/J.Rse.05.015

    Article  Google Scholar 

  • Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the earth’s surface. Rev Geophys 36:441–500. doi:10.1029/97rg03139

    Article  Google Scholar 

  • Nof RN, Baer G, Ziv A, Raz E, Atzori S, Salvi S (2013) Sinkhole precursors along the Dead Sea, Israel, revealed by SAR interferometry. Geology 41:1019–1022. doi:10.1130/G34505.1

    Article  Google Scholar 

  • Raucoules D, Bourgine B, de Michele M, Le Cozannet G, Closset L, Bremmer C, Veldkamp H, Tragheim D, Bateson L, Crosetto M, Agudo M, Engdahl M (2009) Validation and intercomparison of Persistent Scatterers Interferometry: PSIC4 project results. J Appl Geophys 68:335–347. doi:10.1016/j.jappgeo.2009.02.003

    Article  Google Scholar 

  • Raucoules D, Cartannaz C, Mathieu F, Midot D (2013) Combined use of space-borne SAR interferometric techniques and ground-based measurements on a 0.3 km2 subsidence phenomenon. Remote Sens Environ 139:331–339. doi:10.1016/j.rse.2013.08.016

    Article  Google Scholar 

  • Rosen PA, Hensley S, Zebker HA, Webb FH, Fielding EJ (1996) Surface deformation and coherence measurements of Kilauea volcano, Hawaii, from SIR-C radar interferometry. J Geophys Res-Planet 101:23109–23125. doi:10.1029/96je01459

    Article  Google Scholar 

  • Samsonov S (2010) Topographic correction for ALOS PALSAR interferometry. IEEE Trans Geosci Remote 48:3020–3027. doi:10.1109/Tgrs.2010.2043739

    Article  Google Scholar 

  • Samsonov S, d’Oreye N, Smets B (2013) Ground deformation associated with post-mining activity at the French-German border revealed by novel InSAR time series method. Int J Appl Earth Observ 23:142–154. doi:10.1016/j.jag.2012.12.008

    Article  Google Scholar 

  • Short N, Brisco B, Couture N, Pollard W, Murnaghan K (2011) Budkewitsch P (2011) A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada. Remote Sens Environ 115:3491–3506. doi:10.1016/J.Rse.08.012

    Article  Google Scholar 

  • Sigmundsson F, Vadon H, Massonnet D (1997) Readjustment of the Krafla spreading segment to crustal rifting measured by satellite radar interferometry. Geophys Res Lett 24:1843–1846. doi:10.1029/97gl01934

    Article  Google Scholar 

  • Treworgy CG, Hindman CA (1991) The proximity of underground mines to residential and other built-up areas in Illinois. Environmental Geology 138, Illinois State Geological Survey, Champaign, Illinois

Download references

Acknowledgments

The authors would like to thank the editor and the reviewers of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abduwasit Ghulam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grzovic, M., Ghulam, A. Evaluation of land subsidence from underground coal mining using TimeSAR (SBAS and PSI) in Springfield, Illinois, USA. Nat Hazards 79, 1739–1751 (2015). https://doi.org/10.1007/s11069-015-1927-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1927-z

Keywords

Navigation