Skip to main content
Log in

Asteroid impact in the Black Sea. Death by drowning or asphyxiation?

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Normally the consequences of an impact of an asteroid in a water body are discussed in terms of the beach run up of impact-generated waves. If even a small asteroid would hit the Black Sea, however, the potential emissions of toxic and flammable gases could be more disastrous to the region (comprised of Romania, Ukraine, Russia, Georgia, Turkey and Bulgaria) than the tsunami caused by the impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahlhorg G (1951) Hydrogen sulfide poisoning in shale oil industry. Arch Indust Hygiene Occupational Med 3:247–266

    Google Scholar 

  • Akimoto H (2003) Global air quality and pollution. Science 302:1716–1718

    Article  Google Scholar 

  • Bascom W (1971) Deep-water archeology. Science 174:261–269

    Article  Google Scholar 

  • Beauchamp RO Jr, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13:25–97

    Google Scholar 

  • Binzel RP (2000) The Torino Impact Hazard Scale. Planetary Space Sci 48:297–303

    Article  Google Scholar 

  • Broomans P (2003) Numerical accuracy in solutions of the shallow water equations, Ph.D. thesis, TU Delft

  • Cazacu MD, Iancu R (2001) Elimination of hydrogen sulfide from deep water of Black Sea by a gas-lift plant. 11th Conf. Sperin, Bucharest

    Google Scholar 

  • Cazacu MD (1999) A survey of the techniques which might preserve the biosphere reservation Danube Delta. The 8th Symposium “Technologies, installations and equipments for improvement of environment quality”. 9–12 November 1999, Bucharest

  • Cazacu MD, Iancu VR (2003) Advantageous technologies for Black Sea water restoration by elimination of hydrogen sulphide. International Symposium Coastal Erosion: Problems and Solutions, 26–28 June 2003, Mangalia – Romania

  • Havens J (1988) A dispersion model for elevated dense gas jet chemical releases, Volumes I and II, US Environmental Protection Agency, Office of Air and Radiation, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711, April 1988

  • Havens JA, Spicer TO (1985) Development of an atmospheric dispersion model for heavier-than-air gas mixtures, Final Report to US Coast Guard, CG-D-23-80, USCG HQ, Washington DC, May 1985

  • Humborg C, Ittekkot V, Cociasu A & v. Bodungen B (1997) Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386:385–388

    Article  Google Scholar 

  • Kharif C, Pelinovsky E (2005) Asteroid impact tsunamis. C R Physique 6:361–366

    Article  Google Scholar 

  • Kondorskaya NV, Shebalin NV (1982) New Catalog of Strong Earthquakes in the Territory of the USSR from Ancient Time to 1975, SE-31, United States Department of Commerce, Boulder, Colorado

  • Kump LR, Pavlov A, Arthur MA, Kato Y, Riccardi A (2003) Death by hydrogen sulfide: A kill mechanism for the end-Permian mass extinction. Annual Meeting of the Geological Society of America, Seattle, WA.

  • Mazur VA, Tsykalo AL, Schuiling RD (1997) Biogeochemical processes in the depths of the Black Sea as a model of wastes transforming technology (in Russian). Emergency Situations and Civil Defense (2):49–50

  • Pararas-Carayannis G (2003) Near and far-field effects of tsunamis generated by the paroxysmal eruptions, explosions, caldera collapses and massive slope failures of the Krakatau volcano in Indonesia on August 26–27, 1883. J Tsunamis Hazards 21(4):191–211

    Google Scholar 

  • Poveda A, Herrera MA, García JL, Hernández-Alcántara A, Curioca K (1999) The expected frequency of collisions of small meteorites with cars and aircraft. Planetary Space Sci 47:715–719

    Article  Google Scholar 

  • Remo JL (1998) An approach to assessing the technological cost/benefits of critical and sub-critical cosmic impact prevention. J Brit Interplanetary Soc 51:461–470

    Google Scholar 

  • Roe PL (1981) Approximate Riemann solvers, parameter vectors and difference schemes. J Comput Phys 43:357–372

    Article  Google Scholar 

  • Schuiling RD (1996) Geochemical engineering; principles and case studies. In: Reuther R (eds) Geochemical approaches to environmental engineering of metals. Springer-Verlag, pp 3–12

  • Schuiling RD (2005) Immobilisation of metal wastes by reaction with H2S in anoxic basins. Concept and Elaboration. Proc MedCoast Conference, October 2005 vol 2:827–830

    Google Scholar 

  • Schuiling RD, Cathcart RB, Badescu V (2005) Asteroid Impact in the Black Sea; a black scenario. Soft Matter under Exogenic Impacts: Fundamentals and Emerging Technologies. NATO Advanced Research Workshop, Odessa. Ed. S. Rzoska

  • Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings, Science, 277, 1956–1962. See also: http://topex.ucsd.edu/cgi-bin/get_data.cgi at Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093–0225

  • Spada, G, Alfonsi L, Boschi E (1999) Chandler wobble excitation by catastrophic flooding of the Black Sea. Annali di Geofisica 42:749–754

    Google Scholar 

  • Spicer T, Havens J (1992) User’s Guide for the DEGADIS 2.1 Dense Gas Dispersion Model. EPA-450/4-89-019, November 1989. This document is available through the National Technical Information Service, 5285 Port Royal Rd, Springfield, VA 22161, Order no. PB90-213893. DEGADIS v2.1, 22 August 1992; view:

  • Sperling M, Schmiedl G, Hemleben C, Emeis K-C, Erlenkeuser H, Grootes P (2003) Black Sea impact on the formation of eastern Mediterranean sapropel S1? Evidence from the Marmara Sea. Palaeogeogr Palaeoclimatol Palaeoecol 190:9–21

    Article  Google Scholar 

  • Stegger JL, Warming RF (1981) Flux vector splitting of the inviscid gasdynamics equations with application to finite-difference methods. J Comput Phys 40:263–293

    Article  Google Scholar 

  • Ward S, Asphaug E (2000) Asteroid impact tsunami: a probabilistic hazard assessment. Icarus 145:64–78

    Article  Google Scholar 

  • Wu RSS (2002) Hypoxia: from molecular responses to ecosystem responses. Marine Pollution Bulletin 45:35–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roelof Dirk Schuiling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuiling, R.D., Cathcart, R.B., Badescu, V. et al. Asteroid impact in the Black Sea. Death by drowning or asphyxiation?. Nat Hazards 40, 327–338 (2007). https://doi.org/10.1007/s11069-006-0017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-006-0017-7

Keywords

Navigation