Skip to main content
Log in

High Frequency Deep Brain Stimulation and Neural Rhythms in Parkinson’s Disease

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

High frequency (HF) deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson’s disease (PD). It effectively treats the cardinal motor signs of PD, including tremor, bradykinesia, and rigidity. The most common neural target is the subthalamic nucleus, located within the basal ganglia, the region most acutely affected by PD pathology. Using chronically-implanted DBS electrodes, researchers have been able to record underlying neural rhythms from several nodes in the PD network as well as perturb it using DBS to measure the ensuing neural and behavioral effects, both acutely and over time. In this review, we provide an overview of the PD neural network, focusing on the pathophysiological signals that have been recorded from PD patients as well as the mechanisms underlying the therapeutic benefits of HF DBS. We then discuss evidence for the relationship between specific neural oscillations and symptoms of PD, including the aberrant relationships potentially underlying functional connectivity in PD as well as the use of different frequencies of stimulation to more specifically target certain symptoms. Finally, we briefly describe several current areas of investigation and how the ability to record neural data in ecologically-valid settings may allow researchers to explore the relationship between brain and behavior in an unprecedented manner, culminating in the future automation of neurostimulation therapy for the treatment of a variety of neuropsychiatric diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afshar, P., Khambhati, A., Stanslaski, S., Carlson, D., Jensen, R., Linde, D., et al. (2012). A translational platform for prototyping closed-loop neuromodulation systems. Frontiers in Neural Circuits, 6(117), 1–15.

    Google Scholar 

  • Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266–271.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, M. E., Postupna, N., & Ruffo, M. (2003). Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. Journal of Neurophysiology, 89(2), 1150–1160.

    Article  PubMed  Google Scholar 

  • Andrew, J. (1984). Surgical treatment of tremor. In L. J. Findley & R. Capildeo (Eds.), Movement disorders: Tremor (pp. 339–351). London: Macmillan.

    Chapter  Google Scholar 

  • Androulidakis, A. G., Kühn, A. A., Chen, C. C., Blomstedt, P., Kempf, F., Kupsch, A., et al. (2007). Dopaminergic therapy promotes lateralized motor activity in the subthalamic area in Parkinson’s disease. Brain, 130(2), 457–468.

    Article  PubMed  Google Scholar 

  • Benabid, A. L., Pollak, P., Gervason, C., Hoffmann, D., Gao, D. M., Hommel, M., et al. (1991). Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet, 337(8738), 403–406.

    Article  CAS  PubMed  Google Scholar 

  • Benabid, A. L., Pollak, P., Gross, C., Hoffmann, D., Benazzouz, A., Gao, D. M., et al. (1994). Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotactic and Functional Neurosurgery, 62(1–4), 76–84.

    Article  CAS  PubMed  Google Scholar 

  • Benabid, A. L., Pollak, P., Gao, D., Hoffmann, D., Limousin, P., Gay, E., et al. (1996). Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. Journal of Neurosurgery, 84(2), 203–214.

    Article  CAS  PubMed  Google Scholar 

  • Bergman, H., Wichmann, T., & DeLong, M. R. (1990). Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science, 249(4975), 1436–1438.

    Article  CAS  PubMed  Google Scholar 

  • Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72, 507–520.

    CAS  PubMed  Google Scholar 

  • Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., et al. (1998). Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends in Neurosciences, 21(1), 32–38.

    Article  CAS  PubMed  Google Scholar 

  • Beudel, M., & Brown, P. (2015). Adaptive deep brain stimulation in Parkinson’s disease. Parkinsonism & Related Disorders. doi:10.1016/j.parkreldis.2015.09.028.

    Google Scholar 

  • Beurrier, C., Bioulac, B., Audin, J., & Hammond, C. (2001). High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. Journal of Neurophysiology, 85(4), 1351–1356.

    CAS  PubMed  Google Scholar 

  • Bezard, E., Boraud, T., Bioulac, B., & Gross, C. E. (1997). Presymptomatic revelation of experimental parkinsonism. NeuroReport, 8(2), 435–438.

    Article  CAS  PubMed  Google Scholar 

  • Birdno, M. J., & Grill, W. M. (2008). Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics, 5(1), 14–25.

    Article  PubMed Central  PubMed  Google Scholar 

  • Blumenfeld, Z., Velisar, A., Miller Koop, M., Hill, B. C., Shreve, L. A., Quinn, E. J., et al. (2015). Sixty hertz neurostimulation amplifies subthalamic neural synchrony in Parkinson’s disease. PLoS ONE. doi:10.1371/journal.pone.0121067.

    Google Scholar 

  • Bouyer, J., Joh, T., & Pickel, V. (1984). Ultrastructural localization of tyrosine hydroxylase in rat nucleus accumbens. Journal of Comparative Neurology, 227, 92–103.

    Article  CAS  PubMed  Google Scholar 

  • Bronte-Stewart, H., Barberini, C., Koop, M. M., Hill, B. C., Henderson, J. M., & Wingeier, B. (2009). The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Experimental Neurology, 215, 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Brown, P. (2007). Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Current Opinion in Neurobiology, 17(6), 656–664.

    Article  CAS  PubMed  Google Scholar 

  • Brown, P., & Williams, D. (2005). Basal ganglia local field potential activity: character and functional significance in the human. Clinical Neurophysiology, 116(11), 2510–2519.

    Article  PubMed  Google Scholar 

  • Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. Journal of Neuroscience, 21(3), 1033–1038.

    CAS  PubMed  Google Scholar 

  • Brown, P., Mazzone, P., Oliviero, A., Altibrandi, M. G., Pilato, F., Tonali, P. A., et al. (2004). Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s disease. Experimental Neurology, 188, 480–490.

    Article  PubMed  Google Scholar 

  • Brozova, H., Barnaure, I., Alterman, R. L., & Tagliati, M. (2009). STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology, 72(8), 770–771.

    Article  PubMed  Google Scholar 

  • Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14(11), 506–515.

    Article  PubMed Central  PubMed  Google Scholar 

  • Carlson, D., Linde, D., Isaacson, B., Afshar, P., Bourget, D., Stanslaski, S., et al. (2013). A flexible algorithm framework for closed-loop neuromodulation research systems. IEEE Engineering in Medicine and Biology Society, 6146–6150.

  • Carron, R., Chaillet, A., Filipchuk, A., Pasillas-Lépine, W., & Hammond, C. (2013). Closing the loop of deep brain stimulation. Frontiers in Systems Neuroscience, 7(112), 1–18.

    Google Scholar 

  • Cassidy, M., Mazzone, P., Oliviero, A., Insola, A., Tonali, P., et al. (2002). Movement-related changes in synchronization in the human basal ganglia. Brain, 125, 1235–1246.

    Article  PubMed  Google Scholar 

  • Castrioto, A., Lozano, A. M., Poon, Y. Y., Lang, A. E., Fallis, M., & Moro, E. (2011). Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Archives of Neurology, 68(12), 1550–1556.

    Article  PubMed  Google Scholar 

  • Chen, C. C., Litvak, V., Gilbertson, T., Kühn, A., Lu, C. S., Lee, S. T., et al. (2007). Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Experimental Neurology, 205(1), 214–221.

    Article  PubMed  Google Scholar 

  • Chen, C. C., Lin, W. Y., Chan, H. L., Hsu, Y. T., Tu, P. H., Lee, S. T., et al. (2011). Stimulation of the subthalamic region at 20 Hz slows the development of grip force in Parkinson’s disease. Experimental Neurology, 231(1), 91–96.

    Article  PubMed  Google Scholar 

  • Costa, R. M., Lin, S. C., Sotnikova, T. D., Cyr, M., Gainetdinov, R. R., Caron, M. G., et al. (2006). Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron, 52, 359–369.

    Article  CAS  PubMed  Google Scholar 

  • Courtemanche, R., Fujii, N., & Graybiel, A. M. (2003). Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. Journal of Neuroscience, 23(37), 11741–11752.

    CAS  PubMed  Google Scholar 

  • Crossman, A. R., Mitchell, I. J., & Sambrook, M. A. (1985). Regional brain uptake of 2-deoxyglucose in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the macaque monkey. Neuropharmacology, 24(6), 587–591.

    Article  CAS  PubMed  Google Scholar 

  • de Hemptinne, C., Ryapolova-Webb, E. S., Air, E. L., Garcia, P. A., Miller, K. J., Ojemann, J. G., et al. (2013). Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proceedings of the National Academy of Sciences, 110(12), 4780–4785.

    Article  Google Scholar 

  • de Hemptinne, C., Swann, N. C., Ostrem, J. L., Ryapolova-Webb, E. S., San Luciano, M., Galifianakis, N. B., et al. (2015). Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nature Neuroscience, 18(5), 779–786.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Solages, C., Hill, B. C., Koop, M. M., Henderson, J. M., & Brontë-Stewart, H. (2010). Bilateral symmetry and coherence of subthalamic nuclei beta band activity in Parkinson’s disease. Experimental Neurology, 221, 260–266.

    Article  PubMed  Google Scholar 

  • Deiber, M. P., Pollak, P., Passingham, R., Landais, P., Gervason, C., Cinotti, L., et al. (1993). Thalamic stimulation and suppression of parkinsonian tremor. Evidence of a cerebellar deactivation using positron emission tomography. Brain, 116(1), 267–279.

    Article  PubMed  Google Scholar 

  • DeLong, M. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13(7), 281–285.

    Article  CAS  PubMed  Google Scholar 

  • Deuschl, G., Schade-Brittinger, C., Krack, P., Volkmann, J., Schäfer, H., Bötzel, K., et al. (2006). A randomized trial of deep-brain stimulation for Parkinson’s disease. New England Journal of Medicine, 355(9), 896–908.

    Article  CAS  PubMed  Google Scholar 

  • Dostrovsky, J. O., Levy, R., Wu, J. P., Hutchison, W. D., Tasker, R. R., & Lozano, A. M. (2000). Microstimulation-induced inhibition of neuronal firing in human globus pallidus. Journal of Neurophysiology, 84(1), 570–574.

    CAS  PubMed  Google Scholar 

  • Doyle, L. M., Kühn, A. A., Hariz, M., Kupsch, A., Schneider, G. H., & Brown, P. (2005). Levodopa-induced modulation of subthalamic beta oscillations during self-paced movements in patients with Parkinson’s disease. European Journal of Neuroscience, 21(5), 1403–1412.

    Article  CAS  PubMed  Google Scholar 

  • Eusebio, A., Chen, C. C., Lu, C. S., Lee, S. T., Tsai, C. H., Limousin, P., et al. (2008). Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson’s disease. Experimental Neurology, 209(1), 125–130.

    Article  PubMed Central  PubMed  Google Scholar 

  • Eusebio, A., Thevathasan, W., Doyle Gaynor, L., Pogosyan, A., Bye, E., Foltynie, T., et al. (2011). Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. Journal of Neurology, Neurosurgery & Psychiatry, 82(5), 569–573.

    Article  CAS  Google Scholar 

  • Fasano, A., Romito, L. M., Daniele, A., Piano, C., Zinno, M., Bentivoglio, A. R., et al. (2010). Motor and cognitive outcome in patients with Parkinson’s disease 8 years after subthalamic implants. Brain, 133(9), 2664–2676.

    Article  PubMed  Google Scholar 

  • Féger, J., Hassani, O. K., & Mouroux, M. (1997). The subthalamic nucleus and its connections. New electrophysiological and pharmacological data. Advances in Neurology, 74, 31–43.

    PubMed  Google Scholar 

  • Feingold, J., Gibson, D. J., DePasquale, B., & Graybiel, A. M. (2015). Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1517629112.

    Google Scholar 

  • Filion, M., Tremblay, L., & Bédard, P. J. (1988). Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Research, 444(1), 165–176.

    Article  CAS  PubMed  Google Scholar 

  • Foffani, G., Priori, A., Egidi, M., Rampini, P., Tamma, F., Caputo, E., et al. (2003). 300-Hz subthalamic oscillations in Parkinson’s disease. Brain, 126(10), 2153–2163.

    Article  CAS  PubMed  Google Scholar 

  • Foffani, G., Ardolino, G., Meda, B., Egidi, M., Rampini, P., Caputo, E., et al. (2005). Altered subthalamo-pallidal synchronisation in parkinsonian dyskinesias. Journal of Neurology, Neurosurgery & Psychiatry, 76(3), 426–428.

    Article  CAS  Google Scholar 

  • Foffani, G., Ardolino, G., Egidi, M., Caputo, E., Bossi, B., & Priori, A. (2006). Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson’s disease. Brain Research Bulletin, 69(2), 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Fogelson, N., Kühn, A. A., Silberstein, P., Limousin, P. D., Hariz, M., Trottenberg, T., et al. (2005a). Frequency dependent effects of subthalamic nucleus stimulation in Parkinson’s disease. Neuroscience Letters, 382(1–2), 5–9.

    Article  CAS  PubMed  Google Scholar 

  • Fogelson, N., Pogosyan, A., Kühn, A. A., Kupsch, A., van Bruggen, G., Speelman, H., et al. (2005b). Reciprocal interactions between oscillatory activities of different frequencies in the subthalamic region of patients with Parkinson’s disease. European Journal of Neuroscience, 22(1), 257–266.

    Article  PubMed  Google Scholar 

  • Fridley, J., Thomas, J. G., Navarro, J. C., & Yoshor, D. (2012). Brain stimulation for the treatment of epilepsy. Neurosurgical Focus. doi:10.3171/2012.1.FOCUS11334.

    PubMed  Google Scholar 

  • Galati, S., Mazzone, P., Fedele, E., Pisani, A., Peppe, A., Pierantozzi, M., et al. (2006). Biochemical and electrophysiological changes of substantia nigra pars reticulata driven by subthalamic stimulation in patients with Parkinson’s disease. European Journal of Neuroscience, 23(11), 2923–2928.

    Article  PubMed  Google Scholar 

  • Gatev, P., & Wichmann, T. (2009). Interactions between cortical rhythms and spiking activity of single basal ganglia neurons in the normal and parkinsonian state. Cerebral Cortex, 19(6), 1330–1344.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gervais-Bernard, H., Xie-Brustolin, J., Mertens, P., Polo, G., Klinger, H., Adamec, D., et al. (2009). Bilateral subthalamic nucleus stimulation in advanced Parkinson’s disease: five year follow-up. Neurology, 256(2), 225–233.

    Article  Google Scholar 

  • Ghika, J., Villemure, J. G., Fankhauser, H., Favre, J., Assal, G., & Ghika-Schmid, F. (1998). Efficiency and safety of bilateral contemporaneous pallidal stimulation (deep brain stimulation) in levodopa-responsive patients with Parkinson’s disease with severe motor fluctuations: a 2-year follow-up review. Journal of Neurosurgery, 89(5), 713–718.

    Article  CAS  PubMed  Google Scholar 

  • Giannicola, G., Marceglia, S., Rossi, L., Mrakic-Sposta, S., Rampini, P., Tamma, F., et al. (2010). The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson’s disease. Experimental Neurology, 226(1), 120–127.

    Article  CAS  PubMed  Google Scholar 

  • Giannicola, G., Rosa, M., Servello, D., Menghetti, C., Carrabba, G., Pacchetti, C., et al. (2012). Subthalamic local field potentials after seven-year deep brain stimulation in Parkinson’s disease. Experimental Neurology, 237(2), 312–317.

    Article  PubMed  Google Scholar 

  • Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science, 324(5925), 354–359.

    Article  CAS  PubMed  Google Scholar 

  • Grill, W. M., & Mclntyre, C. C. (2001). Extracellular excitation of central neurons: implications for the mechanisms of deep brain stimulation. Thalamus & Related Systems, 1(3), 269–277.

    Google Scholar 

  • Grill, W. M., Snyder, A. N., & Miocinovic, S. (2004). Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport, 15(7), 1137–1140.

    Article  PubMed  Google Scholar 

  • Gross, C., Rougier, A., Guehl, D., Boraud, T., Julien, J., & Bioulac, B. (1997). High-frequency stimulation of the globus pallidus internalis in Parkinson’s disease: a study of seven cases. Journal of Neurosurgery, 87(4), 491–498.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, C., Deniau, J., Rizk, A., & Féger, J. (1978). Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Research, 151, 235–244.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. Journal of Neuroscience, 23(5), 1916–1923.

    CAS  PubMed  Google Scholar 

  • Haynes, W. I. A., & Haber, S. N. (2013). The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. The Journal of Neuroscience, 33(11), 4804–4814.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He, B. J. (2014). Scale-free brain activity: past, present and future. Trends in Cognitive Sciences, 18(9), 480–487.

    Article  PubMed Central  PubMed  Google Scholar 

  • He, B. J., Zempel, J. M., Snyder, A. Z., & Raichle, M. E. (2010). The temporal structures and functional significance of scale-free brain activity. Neuron, 66, 353–369.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hebb, A. O., Zhang, J. J., Mahoor, M. H., Tsiokos, C., Matlack, C., Chizeck, H. J., et al. (2014). Creating the feedback loop: closed-loop neurostimulation. Neurosurgery Clinics of North America, 25(1), 187–204.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hellwig, B., Häussler, S., Lauk, M., Guschlbauer, B., Köster, B., Kristeva-Feige, R., et al. (2000). Tremor-correlated cortical activity detected by electroencephalography. Clinical Neurophysiology, 111(5), 806–809.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H., Watts, R. L., & Montgomery, E. B. (2014). Effects of deep brain stimulation frequency on bradykinesia of Parkinson’s disease. Movement Disorders, 29(2), 203–206.

    Article  PubMed  Google Scholar 

  • Hutchison, W. D., Dostrovsky, J. O., Walters, J. R., Courtemanche, R., Boraud, T., Goldberg, J., et al. (2004). Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. Journal of Neuroscience, 24(42), 9240–9243.

    Article  CAS  PubMed  Google Scholar 

  • Iacono, R. P., Lonser, R. R., Mandybur, G., & Yamada, S. (1995). Stimulation of the globus pallidus in Parkinson’s disease. British Journal of Neurosurgery, 9(4), 505–510.

    Article  CAS  PubMed  Google Scholar 

  • Ingham, C. A., Hood, S. H., Taggart, P., & Arbuthnott, G. W. (1998). Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. Journal of Neuroscience, 18(12), 4732–4743.

    CAS  PubMed  Google Scholar 

  • Joundi, R. A., Brittain, J. S., Green, A. L., Aziz, T. Z., Brown, P., & Jenkinson, N. (2012). Oscillatory activity in the subthalamic nucleus during arm reaching in Parkinson’s disease. Experimental Neurology, 236(2), 319–326.

    Article  PubMed  Google Scholar 

  • Kang, G., & Lowery, M. M. (2014). Effects of antidromic and orthodromic activation of STN afferent axons during DBS in Parkinson’s disease: a simulation study. Frontiers in Computational Neuroscience, 8(32), 1–12.

    Google Scholar 

  • Khoo, H. M., Kishima, H., Hosomi, K., Maruo, T., Tani, N., Oshino, S., et al. (2014). Low-frequency subthalamic nucleus stimulation in Parkinson’s disease: a randomized clinical trial. Movement Disorders, 29(2), 270–274.

    Article  PubMed  Google Scholar 

  • Kita, H., & Kitai, S. T. (1991). Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Research, 564(2), 296–305.

    Article  CAS  PubMed  Google Scholar 

  • Kleiner-Fisman, G., Herzog, J., Fisman, D. N., Tamma, F., Lyons, K. E., Pahwa, R., et al. (2006). Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Movement Disorders, 21(Suppl 14), S290–S304.

    Article  PubMed  Google Scholar 

  • Krack, P., Batir, A., Van Blercom, N., Chabardes, S., Fraix, V., Ardouin, C., et al. (2003). Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. New England Journal of Medicine, 349(20), 1925–1934.

    Article  CAS  PubMed  Google Scholar 

  • Kühn, A. A., Williams, D., Kupsch, A., Limousin, P., Hariz, M., Schneider, G. H., et al. (2004). Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain, 127(4), 735–746.

    Article  PubMed  Google Scholar 

  • Kühn, A. A., Kupsch, A., Schneider, G. H., & Brown, P. (2006). Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. European Journal of Neuroscience, 23(7), 1956–1960.

    Article  PubMed  Google Scholar 

  • Kühn, A. A., Kempf, F., Brücke, C., Gaynor Doyle, L., Martinez-Torres, I., Pogosyan, A., et al. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. Journal of Neuroscience, 28(24), 6165–6173.

    Article  PubMed  CAS  Google Scholar 

  • Kühn, A. A., Tsui, A., Aziz, T., Ray, N., Brücke, C., Kupsch, A., et al. (2009). Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Experimental Neurology, 215(2), 380–387.

    Article  PubMed  Google Scholar 

  • Kumar, R., Lozano, A. M., Kim, Y. J., Hutchison, W. D., Sime, E., Halket, E., et al. (1998). Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology, 51(3), 850–855.

    Article  CAS  PubMed  Google Scholar 

  • Lalo, E., Thobois, S., Sharott, A., Polo, G., Mertens, P., Pogosyan, A., et al. (2008). Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease. Journal of Neuroscience, 28(12), 3008–3016.

    Article  CAS  PubMed  Google Scholar 

  • Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219(4587), 979–980.

    Article  CAS  PubMed  Google Scholar 

  • Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain, 125(6), 1196–1209.

    Article  PubMed  Google Scholar 

  • Limousin, P., Pollak, P., Benazzouz, A., Hoffmann, D., Le Bas, J. F., Broussolle, E., et al. (1995). Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet, 345, 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Limousin, P., Krack, P., Pollak, P., Benazzouz, A., Ardouin, C., Hoffmann, D., et al. (1998). Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. New England Journal of Medicine, 339(16), 1105–1111.

    Article  CAS  PubMed  Google Scholar 

  • Little, S., & Brown, P. (2012). What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Annals of the New York Academy of Sciences, 1265, 9–24.

    Article  PubMed Central  PubMed  Google Scholar 

  • Little, S., Pogosyan, A., Neal, S., Zavala, B., Zrinzo, L., Hariz, M., et al. (2013). Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology, 74(3), 449–457.

    Article  PubMed Central  PubMed  Google Scholar 

  • Little, S., Beudel, M., Zrinzo, L., Foltynie, T., Limousin, P., Hariz, M., et al. (2015). Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry. doi:10.1136/jnnp-2015-310972.

    Google Scholar 

  • Litvak, V., Jha, A., Eusebio, A., Oostenveld, R., Foltynie, T., Limousin, P., et al. (2011). Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain, 134(2), 359–374.

    Article  PubMed  Google Scholar 

  • Loher, T. J., Burgunder, J. M., Pohle, T., Weber, S., Sommerhalder, R., & Krauss, J. K. (2002). Long-term pallidal deep brain stimulation in patients with advanced Parkinson disease: 1-year follow-up study. Journal of Neurosurgery, 96(5), 844–853.

    Article  PubMed  Google Scholar 

  • López-Azcárate, J., Tainta, M., Rodríguez-Oroz, M. C., Valencia, M., González, R., Guridi, J., et al. (2010). Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. Journal of Neuroscience, 30(19), 6667–6677.

    Article  PubMed  CAS  Google Scholar 

  • Lozano, A., Hutchison, W., Kiss, Z., Tasker, R., Davis, K., & Dostrovsky, J. (1996). Methods for microelectrode-guided posteroventral pallidotomy. Journal of Neurosurgery, 84(2), 194–202.

    Article  CAS  PubMed  Google Scholar 

  • Magill, P. J., Bolam, J. P., & Bevan, M. D. (2001). Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Journal of Neuroscience, 106(2), 313–330.

    Article  CAS  Google Scholar 

  • Malekmohammadi, M., Herron, J., Velisar, A., Blumenfeld, Z., Trager, M.H., Chizeck, H.J., et al. (2015). Kinematic adaptive deep brain stimulation for resting tremor in Parkinson’s disease. Movement Disorders, in press.

  • Mazzone, P., Lozano, A., Stanzione, P., Galati, S., Scarnati, E., Peppe, A., et al. (2005). Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. NeuroReport, 16(17), 1877–1881.

    Article  PubMed  Google Scholar 

  • McIntyre, C. C., & Grill, W. M. (1999). Excitation of central nervous system neurons by nonuniform electric fields. Biophysics Journal, 76(2), 878–888.

    Article  CAS  Google Scholar 

  • McIntyre, C. C., & Grill, W. M. (2002). Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. Journal of Neurophysiology, 88(4), 1592–1604.

    PubMed  Google Scholar 

  • McIntyre, C. C., & Hahn, P. J. (2010). Network perspectives on the mechanisms of deep brain stimulation. Neurobiology of Disease, 38(3), 329–337.

    Article  PubMed Central  PubMed  Google Scholar 

  • McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. Journal of Neurophysiology, 91(4), 1457–1469.

    Article  PubMed  Google Scholar 

  • Meissner, W., Leblois, A., Hansel, D., Bioulac, B., Gross, C. E., Benazzouz, A., et al. (2005). Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain, 128(10), 2372–2382.

    Article  PubMed  Google Scholar 

  • Merola, A., Zibetti, M., Angrisano, S., Rizzi, L., Ricchi, V., Artusi, C. A., et al. (2011). Parkinson’s disease progression at 30 years: a study of subthalamic deep brain-stimulated patients. Brain, 134(7), 2074–2084.

    Article  PubMed  Google Scholar 

  • Mitchell, I. J., Cross, A. J., Sambrook, M. A., & Crossman, A. R. (1986). N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the monkey: neurochemical pathology and regional brain metabolism. Journal of Neural Transmission. Supplementum, 20, 41–46.

    CAS  PubMed  Google Scholar 

  • Montgomery, E. B. (2007). Basal ganglia physiology and pathophysiology: a reappraisal. Parkinsonism & Related Disorders, 13, 455–465.

    Article  Google Scholar 

  • Moreau, C., Defebvre, L., Destée, A., Bleuse, S., Clement, F., Blatt, J. L., et al. (2008). STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology, 71(2), 80–84.

    Article  CAS  PubMed  Google Scholar 

  • Moro, E., Scerrati, M., Romito, L. M., Roselli, R., Tonali, P., & Albanese, A. (1999). Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurology, 53(1), 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Moro, E., Lozano, A. M., Pollak, P., Agid, Y., Rehncrona, S., Volkmann, J., et al. (2010). Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Movement Disorders, 25(5), 578–586.

    Article  PubMed  Google Scholar 

  • Morrell, M. J. (2011). Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology, 77(13), 1295–1304.

    Article  PubMed  Google Scholar 

  • Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., et al. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. Journal of Neurophysiology, 84(1), 289–300.

    CAS  PubMed  Google Scholar 

  • Narabayashi, H. (1989). Stereotaxic Vim thalamotomy for treatment of tremor. European Neurology, 29(Suppl 1), 29–32.

    Article  PubMed  Google Scholar 

  • Neumann, W.-J., Staub, F., Horn, A., Schanda, J., Mueller, J., Schneider, G.-H., et al. (2015). Deep brain recordings using an implanted pulse generator in Parkinson’s disease. Neuromodulation. doi:10.1111/ner.12348.

    PubMed  Google Scholar 

  • Nieuwboer, A., & Giladi, N. (2013). Characterizing freezing of gait in Parkinson’s disease: models of an episodic phenomenon. Movement Disorders, 28(11), 1509–1519.

    Article  PubMed  Google Scholar 

  • Nini, A., Feingold, A., Slovin, H., & Bergman, H. (1995). Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. Journal of Neurophysiology, 74(4), 1800–1805.

    CAS  PubMed  Google Scholar 

  • Nowak, L. G., & Bullier, J. (1998). Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Experimental Brain Research, 118, 477–488.

    Article  CAS  PubMed  Google Scholar 

  • Ohye, C., & Narabayashi, H. (1979). Physiological study of presumed ventralis intermedius neurons in the human thalamus. Journal of Neurosurgery, 50(3), 290–297.

    Article  CAS  PubMed  Google Scholar 

  • Ohye, C., Hirai, T., Miyazaki, M., Shibazaki, T., & Nakajima, H. (1982). Vim thalamotomy for the treatment of various kinds of tremor. Appled Neurophysiology, 45(3), 275–280.

    CAS  Google Scholar 

  • Oswal, A., Brown, P., & Litvak, V. (2013). Synchronized neural oscillations and the pathophysiology of Parkinson’s disease. Current Opinions in Neurology, 26(6), 662–670.

    Article  Google Scholar 

  • Özkurt, T. E., Butz, M., Homburger, M., Elben, S., Vesper, J., Wojtecki, L., et al. (2011). High frequency oscillations in the subthalamic nucleus: a neurophysiological marker of the motor state in Parkinson’s disease. Experimental Neurology, 229(2), 324–331.

    Article  PubMed  Google Scholar 

  • Pahwa, R., Wilkinson, S., Smith, D., Lyons, K., Miyawaki, E., & Koller, W. C. (1997). High-frequency stimulation of the globus pallidus for the treatment of Parkinson’s disease. Neurology, 49(1), 249–253.

    Article  CAS  PubMed  Google Scholar 

  • Pan, H. S., Frey, K. A., Young, A. B., & Penney, J. B. (1983). Changes in [3H] muscimol binding in substantia nigra, entopeduncular nucleus, globus pallidus, and thalamus after striatal lesions as demonstrated by quantitative receptor autoradiography. Journal of Neuroscience, 3(6), 1189–1198.

    CAS  PubMed  Google Scholar 

  • Pan, H. S., Penney, J. B., & Young, A. B. (1985). Gamma-aminobutyric acid and benzodiazepine receptor changes induced by unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. Journal of Neurochemistry, 45(5), 1396–1404.

    Article  CAS  PubMed  Google Scholar 

  • Parent, A., & Hazrati, L. N. (1995). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research Reviews, 20, 91–127.

    Article  CAS  PubMed  Google Scholar 

  • Piboolnurak, P., Lang, A. E., Lozano, A. M., Miyasaki, J. M., Saint-Cyr, J. A., Poon, Y. Y., et al. (2007). Levodopa response in long-term bilateral subthalamic stimulation for Parkinson’s disease. Movement Disorders, 22(7), 990–997.

    Article  PubMed  Google Scholar 

  • Plaha, P., & Gill, S. S. (2005). Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. NeuroReport, 16(17), 1883–1887.

    Article  PubMed  Google Scholar 

  • Priori, A., Foffani, G., Pesenti, A., Bianchi, A., Chiesa, V., Baselli, G., et al. (2002). Movement-related modulation of neural activity in human basal ganglia and its L-DOPA dependency: recordings from deep brain stimulation electrodes in patients with Parkinson’s disease. Neurological Sciences, 23(2), S101–S102.

    Article  PubMed  Google Scholar 

  • Priori, A., Foffani, G., Pesenti, A., Tamma, F., Bianchi, A. M., Pellegrini, M., et al. (2004). Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Experimental Neurology, 189, 369–379.

    Article  CAS  PubMed  Google Scholar 

  • Priori, A., Foffani, G., Rossi, L., & Marceglia, S. (2012). Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Experimental Neurology, 245, 77–86.

    Article  PubMed  Google Scholar 

  • Quinn, E. J., Blumenfeld, Z., Velisar, A., Koop, M. M., Shreve, L. A., Trager, M. H., et al. (2015). Beta oscillations in freely moving Parkinson’s subjects are attenuated during deep brain stimulation. Movement Disorders. doi:10.1002/mds.26376.

    Google Scholar 

  • Ramdhani, R. A., Patel, A., Swope, D., & Kopell, B. H. (2015). Early use of 60 Hz frequency subthalamic stimulation in Parkinson’s disease: a case series and review. Neuromodulation. doi:10.1111/ner.12288.

    PubMed  Google Scholar 

  • Ray, N. J., Jenkinson, N., Wang, S., Holland, P., Brittain, J. S., Joint, C., et al. (2008). Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Experimental Neurology, 213, 108–113.

    Article  CAS  PubMed  Google Scholar 

  • Raz, A., Frechter-Mazar, V., Feingold, A., Abeles, M., Vaadia, E., & Bergman, H. (2001). Activity of pallidal and striatal tonically active neurons is correlated in MPTP-treated monkeys but not in normal monkeys. Journal of Neuroscience, 21(3), 1–5.

    Google Scholar 

  • Ricchi, V., Zibetti, M., Angrisano, S., Merola, A., Arduino, N., Artusi, C. A., et al. (2012). Transient effects of 80 Hz stimulation on gait in STN DBS treated PD patients: a 15 months follow-up study. Brain Stimulation, 5(3), 388–392.

    Article  PubMed  Google Scholar 

  • Robledo, P., & Féger, J. (1990). Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: electrophysiological data. Brain Research, 518, 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Oroz, M. C., Obeso, J. A., Lang, A. E., Houeto, J. L., Pollak, P., Rehncrona, S., et al. (2005). Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain, 128(10), 2240–2249.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Oroz, M. C., Moro, E., & Krack, P. (2012). Long-term outcomes of surgical therapies for Parkinson’s disease. Movement Disorders, 27(14), 1718–1728.

    Article  PubMed  Google Scholar 

  • Romito, L. M., Contarino, M. F., Vanacore, N., Bentivoglio, A. R., Scerrati, M., & Albanese, A. (2009). Replacement of dopaminergic medication with subthalamic nucleus stimulation in Parkinson’s disease: long-term observation. Movement Disorders, 24(4), 557–563.

    Article  PubMed  Google Scholar 

  • Rosa, M., Giannicola, G., Servello, D., Marceglia, S., Pacchetti, C., Porta, M., et al. (2011). Subthalamic local field beta oscillations during ongoing deep brain stimulation in Parkinson’s disease in hyperacute and chronic phases. Neurosignals, 19(3), 151–162.

    Article  CAS  PubMed  Google Scholar 

  • Rosa, M., Arlotti, M., Ardolino, G., Cogiamanian, F., Marceglia, S., Di Fonzo, A., et al. (2015). Adaptive deep brain stimulation in a freely moving Parkinsonian patient. Movement Disorders, 30(7), 1003–1005.

    Article  PubMed  Google Scholar 

  • Rosin, B., Slovik, M., Mitelman, R., Rivlin-Etzion, M., Haber, S. N., Israel, Z., et al. (2011). Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron, 72(2), 370–384.

    Article  CAS  PubMed  Google Scholar 

  • Schüpbach, W. M., Chastan, N., Welter, M. L., Houeto, J. L., Mesnage, V., Bonnet, A. M., et al. (2005). Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. Journal of Neurology, Neurosurgery & Psychiatry, 76(12), 1640–1644.

    Article  Google Scholar 

  • Sharott, A., Magill, P. J., Harnack, D., Kupsch, A., Meissner, W., & Brown, P. (2005). Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. European Journal of Neuroscience, 21(5), 1413–1422.

    Article  PubMed  Google Scholar 

  • Sidiropoulos, C., Walsh, R., Meaney, C., Poon, Y. Y., Fallis, M., & Moro, E. (2013). Low-frequency subthalamic nucleus deep brain stimulation for axial symptoms in advanced Parkinson’s disease. Neurology, 260(9), 2306–2311.

    Article  CAS  Google Scholar 

  • Siegfried, J., & Lippitz, B. (1994). Chronic electrical stimulation of the VL-VPL complex and of the pallidum in the treatment of movement disorders: personal experience since 1982. Stereotactic and Functional Neurosurgery, 62, 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Silberstein, P., Oliviero, A., Di Lazzaro, V., Insola, A., Mazzone, P., & Brown, P. (2005). Oscillatory pallidal local field potential activity inversely correlates with limb dyskinesias in Parkinson’s disease. Experimental Neurology, 194(2), 523–529.

    Article  PubMed  Google Scholar 

  • Singh, A., Plate, A., Kammermeier, S., Mehrkens, J. H., Ilmberger, J., & Bötzel, K. (2013). Freezing of gait-related oscillatory activity in the human subthalamic nucleus. Basal Ganglia, 3, 25–32.

    Article  Google Scholar 

  • Stanslaski, S., Afshar, P., Cong, P., Giftakis, J., Stypulkowski, P., Carlson, D., et al. (2012). Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(4), 410–421.

    Article  PubMed  Google Scholar 

  • Stefani, A., Lozano, A. M., Peppe, A., Stanzione, P., Galati, S., Tropepi, D., et al. (2007). Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain, 130(6), 1596–1607.

    Article  PubMed  Google Scholar 

  • Stegemöller, E. L., Vallabhajosula, S., Haq, I., Hwynn, N., Hass, C. J., & Okun, M. S. (2013). Selective use of low frequency stimulation in Parkinson’s disease based on absence of tremor. NeuroRehabilitation, 33(2), 305–312.

    PubMed  Google Scholar 

  • Stypulkowski, P. H., Stanslaski, S. R., Denison, T. J., & Giftakis, J. E. (2013). Chronic evaluation of a clinical system for deep brain stimulation and recording of neural network activity. Stereotactic and Functional Neurosurgery, 91(4), 220–232.

    Article  PubMed  Google Scholar 

  • Stypulkowski, P. H., Stanslaski, S. R., Jensen, R. M., Denison, T. J., & Giftakis, J. E. (2014). Brain stimulation for epilepsy--local and remote modulation of network excitability. Brain Stimulation, 7(3), 350–358.

    Article  PubMed  Google Scholar 

  • The Deep Brain Stimulation for Parkinson’s Disease Study Group. (2001). Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. New England Journal of Medicine, 345(13), 956–963.

    Article  Google Scholar 

  • Timmermann, L., Gross, J., Dirks, M., Volkmann, J., Freund, H. J., & Schnitzler, A. (2003). The cerebral oscillatory network of parkinsonian resting tremor. Brain, 126(1), 199–212.

    Article  PubMed  Google Scholar 

  • Timmermann, L., Wojtecki, L., Gross, J., Lehrke, R., Voges, J., Maarouf, M., et al. (2004). Ten-Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Movement Disorders, 19(11), 1328–1333.

    Article  PubMed  Google Scholar 

  • Toledo, J. B., López-Azcárate, J., Garcia-Garcia, D., Guridi, J., Valencia, M., Artieda, J., et al. (2014). High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease. Neurobiology of Disease, 64, 60–65.

    Article  PubMed  Google Scholar 

  • Tort, A. B., Komorowski, R., Eichenbaum, H., & Kopell, N. (2010). Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. Journal of Neurophysiology, 104(2), 1195–1210.

    Article  PubMed Central  PubMed  Google Scholar 

  • van Wijk, B. C., Jha, A., Penny, W., & Litvak, V. (2015). Parametric estimation of cross-frequency coupling. Journal of Neuroscience Methods, 243, 94–102.

    Article  PubMed Central  PubMed  Google Scholar 

  • Velisar, A., Shreve, L. A., Hill, B.C., Yu, H., Henderson, J. M., & Bronte-Stewart, H. (2013). Resolution of rest tremor reveals underlying subthalamic nucleus beta band synchrony in Parkinson’s disease. Abstract. 43rd Annual Meeting of the Society for Neuroscience. http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=9bf8f6b9-f25f-4c6c-9152-94bca64c5672&cKey=b29b2911-79ad-44ac-b5aa-93bcc24323b8&mKey=8d2a5bec-4825-4cd6-9439-b42bb151d1cf. Accessed 9 November 2015.

  • Vitek, J., Bakay, R., Hashimoto, T., Kaneoke, Y., Mewes, K., Zhang, J. Y., et al. (1998). Microelectrode guided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease. Journal of Neurosurgery, 88, 1027–1043.

    Article  CAS  PubMed  Google Scholar 

  • Volkmann, J., Joliot, M., Mogilner, A., Ioannides, A. A., Lado, F., Fazzini, E., et al. (1996). Central motor loop oscillations in parkinsonian resting tremor revealed by magnetoencephalography. Neurology, 46(5), 1359–1370.

    Article  CAS  PubMed  Google Scholar 

  • Volkmann, J., Sturm, V., Weiss, P., Kappler, J., Voges, J., Koulousakis, A., et al. (1998). Bilateral high-frequency stimulation of the internal globus pallidus in advanced Parkinson’s disease. Annals of Neurology, 44(6), 953–961.

    Article  CAS  PubMed  Google Scholar 

  • Volkmann, J., Allert, N., Voges, J., Weiss, P. H., Freund, H. J., & Sturm, V. (2001). Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology, 56(4), 548–551.

    Article  CAS  PubMed  Google Scholar 

  • Volkmann, J., Allert, N., Voges, J., Sturm, V., Schnitzler, A., & Freund, H. J. (2004). Long-term results of bilateral pallidal stimulation in Parkinson’s disease. Annals of Neurology, 55(6), 871–875.

    Article  PubMed  Google Scholar 

  • Vyas, S., Huang, H., Gale, J., Sarma, S., & Montgomery, E. (2015). Neuronal complexity in subthalamic nucleus is reduced in Parkinson’s disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering. doi:10.1109/TNSRE.2015.2453254.

    PubMed  Google Scholar 

  • Weaver, F. M., Follett, K. A., Stern, M., Luo, P., Harris, C. L., Hur, K., et al. (2012). Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology, 79(1), 55–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weinberger, M., Mahant, N., Hutchison, W. D., Lozano, A. M., Moro, E., Hodaie, M., et al. (2006). Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. Journal of Neurophysiology, 96, 3248–3256.

    Article  PubMed  Google Scholar 

  • Whitmer, D., de Solages, C., Hill, B., Yu, H., Henderson, J. M., & Bronte-Stewart, H. (2012). High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease. Frontiers in Human Neuroscience, 6(155), 1–18.

    Google Scholar 

  • Wichmann, T., Bergman, H., & DeLong, M. (1994). The primate subthalamic nucleus. I. Functional properties in intact animals. Journal of Neurophysiology, 72(2), 494–506.

    CAS  PubMed  Google Scholar 

  • Wider, C., Pollo, C., Bloch, J., Burkhard, P. R., & Vingerhoets, F. J. (2008). Long-term outcome of 50 consecutive Parkinson’s disease patients treated with subthalamic deep brain stimulation. Parkinsonism & Related Disorders, 14(2), 114–119.

    Article  CAS  Google Scholar 

  • Williams, D., Tijssen, M., van Bruggen, G., Bosch, A., Insola, A., Di Lazzaro, V., et al. (2002). Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain, 125, 1558–1569.

    Article  PubMed  Google Scholar 

  • Wingeier, B., Tcheng, T., Koop, M. M., Hill, B. C., Heit, G., & Bronte-Stewart, H. (2006). Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Experimental Neurology, 197, 244–251.

    Article  PubMed  Google Scholar 

  • Xu, W., Russo, G. S., Hashimoto, T., Zhang, J., & Vitek, J. L. (2008). Subthalamic nucleus stimulation modulates thalamic neuronal activity. Journal of Neuroscience, 28(46), 11916–11924.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang, A. I., Vanegas, N., Lungu, C., & Zaghloul, K. A. (2014). Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson’s disease. Journal of Neuroscience, 34(38), 12816–12827.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zibetti, M., Merola, A., Rizzi, L., Ricchi, V., Angrisano, S., Azzaro, C., et al. (2011). Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease. Movement Disorders, 26(13), 2327–2334.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mahsa Malekmohammadi for her contributions to the making of the figures. Our published work was supported with funding by The Robert and Ruth Halperin Foundation as well as the Helen M. Cahill Award for Research in Parkinson’s Disease. The authors have received no financial compensation from Medtronic, Inc. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Brontë-Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumenfeld, Z., Brontë-Stewart, H. High Frequency Deep Brain Stimulation and Neural Rhythms in Parkinson’s Disease. Neuropsychol Rev 25, 384–397 (2015). https://doi.org/10.1007/s11065-015-9308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-015-9308-7

Keywords

Navigation