Skip to main content
Log in

Preclinical Evidence for a Role of the Nicotinic Cholinergic System in Parkinson’s Disease

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

One of the primary deficits in Parkinson’s disease (PD) is the loss of dopaminergic neurons in the substantia nigra pars compacta which leads to striatal dopaminergic deficits that underlie the motor symptoms associated with the disease. A plethora of animal models have been developed over the years to uncover the molecular alterations that lead to PD development. These models have provided valuable information on neurotransmitter pathways and mechanisms involved. One such a system is the nicotinic cholinergic system. Numerous studies show that nigrostriatal damage affects nicotinic receptor-mediated dopaminergic signaling; therefore therapeutic modulation of the nicotinic cholinergic system may offer a novel approach to manage PD. In fact, there is evidence showing that nicotinic receptor drugs may be useful as neuroprotective agents to prevent Parkinson’s disease progression. Additional preclinical studies also show that nicotinic receptor drugs may be beneficial for the treatment of L-dopa induced dyskinesias. Here, we review preclinical findings supporting the idea that nicotinic receptors are valuable therapeutic targets for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abin-Carriquiry, J. A., McGregor-Armas, R., Costa, G., Urbanavicius, J., & Dajas, F. (2002). Presynaptic involvement in the nicotine prevention of the dopamine loss provoked by 6-OHDA administration in the substantia nigra. Neurotoxicity Research, 4(2), 133–139.

    Article  CAS  PubMed  Google Scholar 

  • Ahlskog, J. E., & Muenter, M. D. (2001). Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Movement Disorders, 16(3), 448–458.

    Article  CAS  PubMed  Google Scholar 

  • Akaike, A., Tamura, Y., Yokota, T., Shimohama, S., & Kimura, J. (1994). Nicotine-induced protection of cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Research, 644(2), 181–187.

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque, E. X., Pereira, E. F., Alkondon, M., & Rogers, S. W. (2009). Mammalian nicotinic acetylcholine receptors: from structure to function. Physiological Reviews, 89(1), 73–120.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alvarez-Fischer, D., Guerreiro, S., Hunot, S., Saurini, F., Marien, M., Sokoloff, P., Hirsch, E. C., Hartmann, A., & Michel, P. P. (2008). Modelling Parkinson-like neurodegeneration via osmotic minipump delivery of MPTP and probenecid. Journal of Neurochemistry, 107(3), 701–711.

    Article  CAS  PubMed  Google Scholar 

  • Barone, P. (2010). Neurotransmission in Parkinson’s disease: beyond dopamine. European Journal of Neurology, 17(3), 364–376.

    Article  CAS  PubMed  Google Scholar 

  • Bastide, M. F., Meissner, W. G., Picconi, B., Fasano, S., Fernagut, P. O., Feyder, M., Francardo, V., Alcacer, C., Ding, Y., Brambilla, R., Fisone, G., Jon Stoessl, A., Bourdenx, M., Engeln, M., Navailles, S., De Deurwaerdere, P., Ko, W. K., Simola, N., Morelli, M., Groc, L., Rodriguez, M. C., Gurevich, E. V., Quik, M., Morari, M., Mellone, M., Gardoni, F., Tronci, E., Guehl, D., Tison, F., Crossman, A. R., Kang, U. J., Steece-Collier, K., Fox, S., Carta, M., Angela Cenci, M., & Bezard, E. (2015). Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Progress in Neurobiology, 132, 96–168.

    Article  CAS  PubMed  Google Scholar 

  • Bertram, L., & Tanzi, R. E. (2005). The genetic epidemiology of neurodegenerative disease. Journal of Clinical Investigation, 115(6), 1449–1457.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bitner, R. S., Bunnelle, W. H., Decker, M. W., Drescher, K. U., Kohlhaas, K. L., Markosyan, S., Marsh, K. C., Nikkel, A. L., Browman, K., Radek, R., Anderson, D. J., Buccafusco, J., & Gopalakrishnan, M. (2010). In vivo pharmacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107: preclinical considerations in Alzheimer’s disease. Journal of Pharmacol and Experimental Therapeutics, 334(3), 875–886.

    Article  CAS  Google Scholar 

  • Blesa, J., & Przedborski, S. (2014). Parkinson’s disease: animal models and dopaminergic cell vulnerability. Frontiers in Neuroanatomy, 8, 155.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bohnen, N. I., & Albin, R. L. (2011). The cholinergic system and Parkinson disease. Behavioural Brain Research, 221(2), 564–573.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bohnen, N. I., Muller, M. L., Kotagal, V., Koeppe, R. A., Kilbourn, M. R., Gilman, S., Albin, R. L., & Frey, K. A. (2012). Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. Journal of Cerebral Blood Flow and Metabolism, 32(8), 1609–1617.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bohnen, N. I., Frey, K. A., Studenski, S., Kotagal, V., Koeppe, R. A., Scott, P. J., Albin, R. L., & Muller, M. L. (2013). Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology, 81(18), 1611–1616.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boraud, T., Bezard, E., Bioulac, B., & Gross, C. E. (2001). Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alterations of pallidal neurones in the MPTP-treated monkey. Brain, 124(Pt 3), 546–557.

    Article  CAS  PubMed  Google Scholar 

  • Bordia T, Decker MW and Quik M Unpublished observation.

  • Bordia, T., Grady, S. R., McIntosh, J. M., & Quik, M. (2007). Nigrostriatal damage preferentially decreases a subpopulation of alpha6beta2* nAChRs in mouse, monkey, and Parkinson’s disease striatum. Molecular Pharmacology, 72(1), 52–61.

    Article  CAS  PubMed  Google Scholar 

  • Bordia, T., Campos, C., Huang, L., & Quik, M. (2008). Continuous and intermittent nicotine treatment reduces L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias in a rat model of Parkinson’s disease. Journal of Pharmacol and Experimental Therapeutics, 327(1), 239–247.

    Article  CAS  Google Scholar 

  • Bordia, T., Campos, C., McIntosh, J. M., & Quik, M. (2010). Nicotinic receptor-mediated reduction in L-DOPA-induced dyskinesias may occur via desensitization. Journal of Pharmacol and Experimental Therapeutics, 333(3), 929–938.

    Article  CAS  Google Scholar 

  • Bordia, T., McIntosh, J. M., & Quik, M. (2013). The nicotine-mediated decline in l-dopa-induced dyskinesias is associated with a decrease in striatal dopamine release. Journal of Neurochemistry, 125(2), 291–302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bordia, T., McGregor, M., McIntosh, J. M., Drenan, R. M., & Quik, M. (2015a). Evidence for a role for alpha6(*) nAChRs in l-dopa-induced dyskinesias using Parkinsonian alpha6(*) nAChR gain-of-function mice. Neuroscience, 295, 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Bordia, T., McGregor, M., Papke, R. L., Decker, M. W., McIntosh, J. M., & Quik, M. (2015b). The alpha7 nicotinic receptor agonist ABT-107 protects against nigrostriatal damage in rats with unilateral 6-hydroxydopamine lesions. Experimental Neurology, 263, 277–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyce, S., Rupniak, N. M., Steventon, M. J., & Iversen, S. D. (1990). Characterisation of dyskinesias induced by L-dopa in MPTP-treated squirrel monkeys. Psychopharmacology, 102(1), 21–27.

    Article  CAS  PubMed  Google Scholar 

  • Breger, L. S., Dunnett, S. B., & Lane, E. L. (2013). Comparison of rating scales used to evaluate L-DOPA-induced dyskinesia in the 6-OHDA lesioned rat. Neurobiology of Disease, 50, 142–150.

    Article  CAS  PubMed  Google Scholar 

  • Brotchie, J. (2010). Antidyskinetic actions of amantadine in Parkinson’s disease: are benefits maintained in the long term? Expert Review of Neurotherapeutics, 10(6), 871–873.

    Article  CAS  PubMed  Google Scholar 

  • Campos, F. L., Carvalho, M. M., Cristovao, A. C., Je, G., Baltazar, G., Salgado, A. J., Kim, Y. S., & Sousa, N. (2013). Rodent models of Parkinson’s disease: beyond the motor symptomatology. Frontiers in Behavioral Neuroscience, 7, 175.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carvalho, M. M., Campos, F. L., Coimbra, B., Pego, J. M., Rodrigues, C., Lima, R., Rodrigues, A. J., Sousa, N., & Salgado, A. J. (2013). Behavioral characterization of the 6-hydroxidopamine model of Parkinson’s disease and pharmacological rescuing of non-motor deficits. Molecular Neurodegeneration, 8, 14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cenci, M.A. & Lundblad, M. (2007). Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson’s disease in rats and mice. Current Protocols in Neuroscience Chapter 9: Unit 9 25.

  • Cenci, M. A., Whishaw, I. Q., & Schallert, T. (2002). Animal models of neurological deficits: how relevant is the rat? Nature Reviews Neuroscience, 3(7), 574–579.

    Article  CAS  PubMed  Google Scholar 

  • Champtiaux, N., Gotti, C., Cordero-Erausquin, M., David, D. J., Przybylski, C., Lena, C., Clementi, F., Moretti, M., Rossi, F. M., Le Novere, N., McIntosh, J. M., Gardier, A. M., & Changeux, J. P. (2003). Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. Journal of Neuroscience, 23(21), 7820–7829.

    CAS  PubMed  Google Scholar 

  • Cincotta, S. L., Yorek, M. S., Moschak, T. M., Lewis, S. R., & Rodefer, J. S. (2008). Selective nicotinic acetylcholine receptor agonists: potential therapies for neuropsychiatric disorders with cognitive dysfunction. Current Opinion in Investigational Drugs, 9(1), 47–56.

    CAS  PubMed  Google Scholar 

  • Clemens, P., Baron, J. A., Coffey, D., & Reeves, A. (1995). The short-term effect of nicotine chewing gum in patients with Parkinson’s disease. Psychopharmacology, 117(2), 253–256.

    Article  CAS  PubMed  Google Scholar 

  • Cormier, A., Morin, C., Zini, R., Tillement, J. P., & Lagrue, G. (2003). Nicotine protects rat brain mitochondria against experimental injuries. Neuropharmacology, 44(5), 642–652.

    Article  CAS  PubMed  Google Scholar 

  • Costa, G., Abin-Carriquiry, J. A., & Dajas, F. (2001). Nicotine prevents striatal dopamine loss produced by 6-hydroxydopamine lesion in the substantia nigra. Brain Research, 888(2), 336–342.

    Article  CAS  PubMed  Google Scholar 

  • Darvas, M., Henschen, C. W., & Palmiter, R. D. (2014). Contributions of signaling by dopamine neurons in dorsal striatum to cognitive behaviors corresponding to those observed in Parkinson’s disease. Neurobiology of Disease, 65, 112–123.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Leonibus, E., Pascucci, T., Lopez, S., Oliverio, A., Amalric, M., & Mele, A. (2007). Spatial deficits in a mouse model of Parkinson disease. Psychopharmacology, 194(4), 517–525.

    Article  CAS  PubMed  Google Scholar 

  • Decamp, E., & Schneider, J. S. (2009). Interaction between nicotinic and dopaminergic therapies on cognition in a chronic Parkinson model. Brain Research, 1262, 109–114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Di Monte, D. A., McCormack, A., Petzinger, G., Janson, A. M., Quik, M., & Langston, W. J. (2000). Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Movement Disorders, 15(3), 459–466.

    Article  PubMed  Google Scholar 

  • Di Paolo, T., Gregoire, L., Feuerbach, D., Elbast, W., Weiss, M., & Gomez-Mancilla, B. (2014). AQW051, a novel and selective nicotinic acetylcholine receptor alpha7 partial agonist, reduces l-Dopa-induced dyskinesias and extends the duration of l-Dopa effects in parkinsonian monkeys. Parkinsonism & Related Disorders, 20(11), 1119–1123.

    Article  Google Scholar 

  • Dineley, K. T., Pandya, A. A., & Yakel, J. L. (2015). Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends in Pharmacological Sciences, 36(2), 96–108.

    Article  CAS  PubMed  Google Scholar 

  • Dunbar, G. C., Kuchibhatla, R. V., Lee, G., & Group T-ACS. (2011). A randomized double-blind study comparing 25 and 50 mg TC-1734 (AZD3480) with placebo, in older subjects with age-associated memory impairment. Journal of Psychopharmacology, 25(8), 1020–1029.

    Article  CAS  PubMed  Google Scholar 

  • Dunnett, S. B., & Lelos, M. (2010). Behavioral analysis of motor and non-motor symptoms in rodent models of Parkinson’s disease. Progress in Brain Research, 184, 35–51.

    Article  CAS  PubMed  Google Scholar 

  • Ebersbach, G., Stock, M., Muller, J., Wenning, G., Wissel, J., & Poewe, W. (1999). Worsening of motor performance in patients with Parkinson’s disease following transdermal nicotine administration. Movement Disorders, 14(6), 1011–1013.

    Article  CAS  PubMed  Google Scholar 

  • Elbaz, A., & Moisan, F. (2008). Update in the epidemiology of Parkinson’s disease. Current Opinion in Neurology, 21(4), 454–460.

    Article  PubMed  Google Scholar 

  • Exley, R., & Cragg, S. J. (2008). Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. British Journal of Pharmacology, 153(Suppl 1), S283–S297.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fagerstrom, K. O., Pomerleau, O., Giordani, B., & Stelson, F. (1994). Nicotine may relieve symptoms of Parkinson’s disease. Psychopharmacology, 116(1), 117–119.

    Article  CAS  PubMed  Google Scholar 

  • Faull, R. L., & Laverty, R. (1969). Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra. Experimental Neurology, 23(3), 332–340.

    Article  CAS  PubMed  Google Scholar 

  • Fleming, S. M., & Chesselet, M. F. (2006). Behavioral phenotypes and pharmacology in genetic mouse models of Parkinsonism. Behavioral Pharmacology, 17(5–6), 383–391.

    Article  Google Scholar 

  • Forno, L. S., Langston, J. W., DeLanney, L. E., Irwin, I., & Ricaurte, G. A. (1986). Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Annals of Neurology, 20(4), 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Fox, S. H., & Brotchie, J. M. (2010). The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. Progress in Brain Research, 184, 133–157.

    Article  CAS  PubMed  Google Scholar 

  • Fox, S. H., Johnston, T. H., Li, Q., Brotchie, J., & Bezard, E. (2012). A critique of available scales and presentation of the Non-Human Primate Dyskinesia Rating Scale. Movement Disorders, 27(11), 1373–1378.

    Article  PubMed  Google Scholar 

  • Francardo, V., Recchia, A., Popovic, N., Andersson, D., Nissbrandt, H., & Cenci, M. A. (2011). Impact of the lesion procedure on the profiles of motor impairment and molecular responsiveness to L-DOPA in the 6-hydroxydopamine mouse model of Parkinson’s disease. Neurobiology of Disease, 42(3), 327–340.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Z. G., Cui, W. Y., Zhang, H. T., & Liu, C. G. (1998). Effects of nicotine on 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine-induced depression of striatal dopamine content and spontaneous locomotor activity in C57 black mice. Pharmacological Research, 38(2), 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Geerts, H. (2012). alpha7 Nicotinic receptor modulators for cognitive deficits in schizophrenia and Alzheimer’s disease. Expert Opinion on Investigational Drugs, 21(1), 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Mancilla, B., & Bedard, P. J. (1993). Effect of nondopaminergic drugs on L-dopa-induced dyskinesias in MPTP-treated monkeys. Clinical Neuropharmacology, 16(5), 418–427.

    Article  CAS  PubMed  Google Scholar 

  • Hambsch, B., Keyworth, H., Lind, J., Otte, D. M., Racz, I., Kitchen, I., Bailey, A., & Zimmer, A. (2014). Chronic nicotine improves short-term memory selectively in a G72 mouse model of schizophrenia. British Journal of Pharmacology, 171(7), 1758–1771.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanagasi, H. A., Lees, A., Johnson, J. O., Singleton, A., & Emre, M. (2007). Smoking-responsive juvenile-onset Parkinsonism. Movement Disorders, 22(1), 115–119.

    Article  PubMed  Google Scholar 

  • Henry, B., Fox, S. H., Peggs, D., Crossman, A. R., & Brotchie, J. M. (1999). The alpha2-adrenergic receptor antagonist idazoxan reduces dyskinesia and enhances anti-parkinsonian actions of L-dopa in the MPTP-lesioned primate model of Parkinson’s disease. Movement Disorders, 14(5), 744–753.

    Article  CAS  PubMed  Google Scholar 

  • Hernan, M. A., Zhang, S. M., Rueda-deCastro, A. M., Colditz, G. A., Speizer, F. E., & Ascherio, A. (2001). Cigarette smoking and the incidence of Parkinson’s disease in two prospective studies. Annals of Neurology, 50(6), 780–786.

    Article  CAS  PubMed  Google Scholar 

  • Heumann, R., Moratalla, R., Herrero, M. T., Chakrabarty, K., Drucker-Colin, R., Garcia-Montes, J. R., Simola, N., & Morelli, M. (2014). Dyskinesia in Parkinson’s disease: mechanisms and current non-pharmacological interventions. Journal of Neurochemistry, 130(4), 472–489.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch, E. C., Jenner, P., & Przedborski, S. (2013). Pathogenesis of Parkinson’s disease. Movement Disorders, 28(1), 24–30.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, A. D., Copland, D. A., Silburn, P. A., & Chenery, H. J. (2011a). Acute nicotine enhances strategy-based semantic processing in Parkinson’s disease. International Journal of Neuropsychopharmacology, 14(7), 877–885.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, A. D., Copland, D. A., Silburn, P. A., & Chenery, H. J. (2011b). Nicotine effects on general semantic priming in Parkinson’s disease. Experimental and Clinical Psychopharmacology, 19(3), 215–223.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L. Z., Parameswaran, N., Bordia, T., Michael McIntosh, J., & Quik, M. (2009). Nicotine is neuroprotective when administered before but not after nigrostriatal damage in rats and monkeys. Journal of Neurochemistry, 109(3), 826–837.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang, L. Z., Campos, C., Ly, J., Ivy Carroll, F., & Quik, M. (2011a). Nicotinic receptor agonists decrease L-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats. Neuropharmacology, 60(6), 861–868.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang, L. Z., Grady, S. R., & Quik, M. (2011b). Nicotine reduces L-DOPA-induced dyskinesias by acting at beta2* nicotinic receptors. Journal of Pharmacol and Experimental Therapeutics, 338(3), 932–941.

    Article  CAS  Google Scholar 

  • Huot, P., Johnston, T. H., Koprich, J. B., Fox, S. H., & Brotchie, J. M. (2013). The pharmacology of L-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacological Reviews, 65(1), 171–222.

    Article  CAS  PubMed  Google Scholar 

  • Hurst, R., Rollema, H., & Bertrand, D. (2013). Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacology and Therapeutics, 137(1), 22–54.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, A., & Miyatake, T. (1993). Effects of smoking in patients with early-onset Parkinson’s disease. Journal of Neurological Sciences, 117(1–2), 28–32.

    Article  CAS  Google Scholar 

  • Janson, A. M., Meana, J. J., Goiny, M., & Herrera-Marschitz, M. (1991). Chronic nicotine treatment counteracts the decrease in extracellular neostriatal dopamine induced by a unilateral transection at the mesodiencephalic junction in rats: a microdialysis study. Neuroscience Letters, 134(1), 88–92.

    Article  CAS  PubMed  Google Scholar 

  • Janson, A. M., Fuxe, K., & Goldstein, M. (1992). Differential effects of acute and chronic nicotine treatment on MPTP-(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced degeneration of nigrostriatal dopamine neurons in the black mouse. The Clinical Investigator, 70(3–4), 232–238.

    CAS  PubMed  Google Scholar 

  • Javoy, F., Sotelo, C., Herbet, A., & Agid, Y. (1976). Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system. Brain Research, 102(2), 201–215.

    Article  CAS  PubMed  Google Scholar 

  • Jennings, K. A., Platt, N. J., & Cragg, S. J. (2015). The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation. Neurobiology of Disease, 82, 262–268.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, T. M., & Fox, S. H. (2015). Symptomatic Models of Parkinson’s Disease and L-DOPA-Induced Dyskinesia in Non-human Primates. Current Topics in Behavioral Neurosciences, 22, 221–235.

    Article  PubMed  Google Scholar 

  • Johnston, T. H., Fox, S. H., Piggott, M. J., Savola, J. M., & Brotchie, J. M. (2010). The alpha(2) adrenergic antagonist fipamezole improves quality of levodopa action in Parkinsonian primates. Movement Disorders, 25(13), 2084–2093.

    Article  PubMed  Google Scholar 

  • Johnston, T. H., Huot, P., Fox, S. H., Koprich, J. B., Szeliga, K. T., James, J. W., Graef, J. D., Letchworth, S. R., Jordan, K. G., Hill, M. P., & Brotchie, J. M. (2013). TC-8831, a nicotinic acetylcholine receptor agonist, reduces L-DOPA-induced dyskinesia in the MPTP macaque. Neuropharmacology, 73, 337–347.

    Article  CAS  PubMed  Google Scholar 

  • Jubelt, L. E., Barr, R. S., Goff, D. C., Logvinenko, T., Weiss, A. P., & Evins, A. E. (2008). Effects of transdermal nicotine on episodic memory in non-smokers with and without schizophrenia. Psychopharmacology, 199(1), 89–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalia, L. V., Kalia, S. K., & Lang, A. E. (2015). Disease-modifying strategies for Parkinson’s disease. Movement Disorders, 30(11), 1442–1450.

    Article  CAS  PubMed  Google Scholar 

  • Kelton, M. C., Kahn, H. J., Conrath, C. L., & Newhouse, P. A. (2000). The effects of nicotine on Parkinson’s disease. Brain and Cognition, 43(1–3), 274–282.

    CAS  PubMed  Google Scholar 

  • Khwaja, M., McCormack, A., McIntosh, J. M., Di Monte, D. A., & Quik, M. (2007). Nicotine partially protects against paraquat-induced nigrostriatal damage in mice; link to alpha6beta2* nAChRs. Journal of Neurochemistry, 100(1), 180–190.

    Article  CAS  PubMed  Google Scholar 

  • Kowall, N. W., Hantraye, P., Brouillet, E., Beal, M. F., McKee, A. C., & Ferrante, R. J. (2000). MPTP induces alpha-synuclein aggregation in the substantia nigra of baboons. Neuroreport, 11(1), 211–213.

    Article  CAS  PubMed  Google Scholar 

  • Kucinski, A., Wersinger, S., Stachowiak, E. K., Corso, T. D., Parry, M. J., Zhang, J., Jordan, K., Letchworth, S., Bencherif, M., & Stachowiak, M. K. (2013). Neuronal nicotinic receptor agonists ameliorate spontaneous motor asymmetries and motor discoordination in a unilateral mouse model of Parkinson’s disease. Pharmacology, Biochemistry and Behavior, 111, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Lemay, S., Chouinard, S., Blanchet, P., Masson, H., Soland, V., Beuter, A., & Bedard, M. A. (2004). Lack of efficacy of a nicotine transdermal treatment on motor and cognitive deficits in Parkinson’s disease. Progress in Neuropsychopharmacology and Biological Psychiatry, 28(1), 31–39.

    Article  CAS  Google Scholar 

  • Lenz, J. D., & Lobo, M. K. (2013). Optogenetic insights into striatal function and behavior. Behavioural Brain Research, 255, 44–54.

    Article  CAS  PubMed  Google Scholar 

  • Lesage, S., & Brice, A. (2009). Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Human Molecular Genetics, 18(R1), R48–R59.

    Article  CAS  PubMed  Google Scholar 

  • Lim, S. A., Kang, U. J., & McGehee, D. S. (2014). Striatal cholinergic interneuron regulation and circuit effects. Frontiers in Synaptic Neuroscience, 6, 22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lombardo, S., & Maskos, U. (2015). Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. Neuropharmacology, 96(Pt B), 255–262.

    Article  CAS  PubMed  Google Scholar 

  • Lundblad, M., Andersson, M., Winkler, C., Kirik, D., Wierup, N., & Cenci, M. A. (2002). Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. European Journal of Neuroscience, 15(1), 120–132.

    Article  CAS  PubMed  Google Scholar 

  • Lundblad, M., Usiello, A., Carta, M., Hakansson, K., Fisone, G., & Cenci, M. A. (2005). Pharmacological validation of a mouse model of l-DOPA-induced dyskinesia. Experimental Neurology, 194(1), 66–75.

    Article  CAS  PubMed  Google Scholar 

  • McCallum, S. E., Parameswaran, N., Perez, X. A., Bao, S., McIntosh, J. M., Grady, S. R., & Quik, M. (2006). Compensation in pre-synaptic dopaminergic function following nigrostriatal damage in primates. Journal of Neurochemistry, 96(4), 960–972.

    Article  CAS  PubMed  Google Scholar 

  • Meissner, W. G., Frasier, M., Gasser, T., Goetz, C. G., Lozano, A., Piccini, P., Obeso, J. A., Rascol, O., Schapira, A., Voon, V., Weiner, D. M., Tison, F., & Bezard, E. (2011). Priorities in Parkinson’s disease research. Nature Reviews Drug Discovery, 10(5), 377–393.

    Article  CAS  PubMed  Google Scholar 

  • Merola, A., Rizzi, L., Zibetti, M., Artusi, C. A., Montanaro, E., Angrisano, S., Lanotte, M., Rizzone, M. G., & Lopiano, L. (2014). Medical therapy and subthalamic deep brain stimulation in advanced Parkinson’s disease: a different long-term outcome? Journal of Neurology, Neurosurgery and Psychiatry, 85(5), 552–559.

    Article  PubMed  Google Scholar 

  • Meshul, C. K., Kamel, D., Moore, C., Kay, T. S., & Krentz, L. (2002). Nicotine alters striatal glutamate function and decreases the apomorphine-induced contralateral rotations in 6-OHDA-lesioned rats. Experimental Neurology, 175(1), 257–274.

    Article  CAS  PubMed  Google Scholar 

  • Millar, N. S., & Gotti, C. (2009). Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology, 56(1), 237–246.

    Article  CAS  PubMed  Google Scholar 

  • Mitsuoka, T., Kaseda, Y., Yamashita, H., Kohriyama, T., Kawakami, H., Nakamura, S., & Yamamura, Y. (2002). Effects of nicotine chewing gum on UPDRS score and P300 in early-onset parkinsonism. Hiroshima Journal of Medical Sciences, 51(1), 33–39.

    CAS  PubMed  Google Scholar 

  • Morens, D. M., Grandinetti, A., Reed, D., White, L. R., & Ross, G. W. (1995). Cigarette smoking and protection from Parkinson’s disease: false association or etiologic clue? Neurology, 45(6), 1041–1051.

    Article  CAS  PubMed  Google Scholar 

  • Muller, M. L., & Bohnen, N. I. (2013). Cholinergic dysfunction in Parkinson’s disease. Current Neurology and Neuroscience Reports, 13(9), 377.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Noyce, A. J., Bestwick, J. P., Silveira-Moriyama, L., Hawkes, C. H., Giovannoni, G., Lees, A. J., & Schrag, A. (2012). Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Annals of Neurology, 72(6), 893–901.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Obeso, J. A., Rodriguez-Oroz, M., Marin, C., Alonso, F., Zamarbide, I., Lanciego, J. L., & Rodriguez-Diaz, M. (2004). The origin of motor fluctuations in Parkinson’s disease: importance of dopaminergic innervation and basal ganglia circuits. Neurology, 62(1 Suppl 1), S17–S30.

    Article  CAS  PubMed  Google Scholar 

  • Obeso, J. A., Rodriguez-Oroz, M. C., Goetz, C. G., Marin, C., Kordower, J. H., Rodriguez, M., Hirsch, E. C., Farrer, M., Schapira, A. H., & Halliday, G. (2010). Missing pieces in the Parkinson’s disease puzzle. Nature Medicine, 16(6), 653–661.

    Article  CAS  PubMed  Google Scholar 

  • Parain, K., Hapdey, C., Rousselet, E., Marchand, V., Dumery, B., & Hirsch, E. C. (2003). Cigarette smoke and nicotine protect dopaminergic neurons against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Parkinsonian toxin. Brain Research, 984(1–2), 224–232.

    Article  CAS  PubMed  Google Scholar 

  • Parkinson Study G. (2006). Randomized placebo-controlled study of the nicotinic agonist SIB-1508Y in Parkinson disease. Neurology, 66(3), 408–410.

    Article  CAS  Google Scholar 

  • Pearce, R. K., Jackson, M., Smith, L., Jenner, P., & Marsden, C. D. (1995). Chronic L-DOPA administration induces dyskinesias in the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-treated common marmoset (Callithrix Jacchus). Movement Disorders, 10(6), 731–740.

    Article  CAS  PubMed  Google Scholar 

  • Perez, X. A., & Quik, M. (2011). Focus on alpha4beta2* and alpha6beta2* nAChRs for Parkinson’s Disease Therapeutics. Molecular and Cellular Pharmacology, 3(1), 1–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perez, X. A., Parameswaran, N., Huang, L. Z., O’Leary, K. T., & Quik, M. (2008). Pre-synaptic dopaminergic compensation after moderate nigrostriatal damage in non-human primates. Journal of Neurochemistry, 105(5), 1861–1872.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perez, X. A., Bordia, T., McIntosh, J. M., & Quik, M. (2010). alpha6ss2* and alpha4ss2* nicotinic receptors both regulate dopamine signaling with increased nigrostriatal damage: relevance to Parkinson’s disease. Molecular Pharmacology, 78(5), 971–980.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petzinger, G. M., Quik, M., Ivashina, E., Jakowec, M. W., Jakubiak, M., Di Monte, D., & Langston, J. W. (2001). Reliability and validity of a new global dyskinesia rating scale in the MPTP-lesioned non-human primate. Movement Disorders, 16(2), 202–207.

    Article  CAS  PubMed  Google Scholar 

  • Porras, G., Li, Q., & Bezard, E. (2012). Modeling Parkinson’s disease in primates: The MPTP model. Cold Spring Harbor Perspectives in Medicine, 2(3), a009308.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Posadas, I., Lopez-Hernandez, B., & Cena, V. (2013). Nicotinic receptors in neurodegeneration. Current Neuropharmacology, 11(3), 298–314.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Potts, L. F., Uthayathas, S., Greven, A. C., Dyavarshetty, B., Mouradian, M. M., & Papa, S. M. (2015). A new quantitative rating scale for dyskinesia in nonhuman primates. Behavioral Pharmacology, 26(1–2), 109–116.

    Article  CAS  Google Scholar 

  • Przedborski, S., Levivier, M., Jiang, H., Ferreira, M., Jackson-Lewis, V., Donaldson, D., & Togasaki, D. M. (1995). Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience, 67(3), 631–647.

    Article  CAS  PubMed  Google Scholar 

  • Quik, M. (2004). Smoking, nicotine and Parkinson’s disease. Trends in Neurosciences, 27(9), 561–568.

    Article  CAS  PubMed  Google Scholar 

  • Quik, M., & Wonnacott, S. (2011). alpha6beta2* and alpha4beta2* nicotinic acetylcholine receptors as drug targets for Parkinson’s disease. Pharmacological Reviews, 63(4), 938–966.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quik, M., Sum, J. D., Whiteaker, P., McCallum, S. E., Marks, M. J., Musachio, J., McIntosh, J. M., Collins, A. C., & Grady, S. R. (2003). Differential declines in striatal nicotinic receptor subtype function after nigrostriatal damage in mice. Molecular Pharmacology, 63(5), 1169–1179.

    Article  CAS  PubMed  Google Scholar 

  • Quik, M., Chen, L., Parameswaran, N., Xie, X., Langston, J. W., & McCallum, S. E. (2006a). Chronic oral nicotine normalizes dopaminergic function and synaptic plasticity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned primates. Journal of Neuroscience, 26(17), 4681–4689.

    Article  CAS  PubMed  Google Scholar 

  • Quik, M., Parameswaran, N., McCallum, S. E., Bordia, T., Bao, S., McCormack, A., Kim, A., Tyndale, R. F., Langston, J. W., & Di Monte, D. A. (2006b). Chronic oral nicotine treatment protects against striatal degeneration in MPTP-treated primates. Journal of Neurochemistry, 98(6), 1866–1875.

    Article  CAS  PubMed  Google Scholar 

  • Quik, M., Cox, H., Parameswaran, N., O’Leary, K., Langston, J. W., & Di Monte, D. (2007a). Nicotine reduces levodopa-induced dyskinesias in lesioned monkeys. Annals of Neurology, 62(6), 588–596.

    Article  CAS  PubMed  Google Scholar 

  • Quik, M., O’Neill, M., & Perez, X. A. (2007b). Nicotine neuroprotection against nigrostriatal damage: importance of the animal model. Trends in Pharmacological Sciences, 28(5), 229–235.

    Article  CAS  PubMed  Google Scholar 

  • Quik, M., Campos, C., Parameswaran, N., Langston, J. W., McIntosh, J. M., & Yeluashvili, M. (2010). Chronic nicotine treatment increases nAChRs and microglial expression in monkey substantia nigra after nigrostriatal damage. Journal of Molecular Neuroscience, 40(1–2), 105–113.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quik, M., Park, K. M., Hrachova, M., Mallela, A., Huang, L. Z., McIntosh, J. M., & Grady, S. R. (2012). Role for alpha6 nicotinic receptors in l-dopa-induced dyskinesias in parkinsonian mice. Neuropharmacology, 63(3), 450–459.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quik, M., Campos, C., Bordia, T., Strachan, J. P., Zhang, J., McIntosh, J. M., Letchworth, S., & Jordan, K. (2013a). alpha4beta2 Nicotinic receptors play a role in the nAChR-mediated decline in L-dopa-induced dyskinesias in parkinsonian rats. Neuropharmacology, 71, 191–203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quik, M., Campos, C., & Grady, S. R. (2013b). Multiple CNS nicotinic receptors mediate L-dopa-induced dyskinesias: studies with parkinsonian nicotinic receptor knockout mice. Biochemical Pharmacology, 86(8), 1153–1162.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quik, M., Mallela, A., Chin, M., McIntosh, J. M., Perez, X. A., & Bordia, T. (2013c). Nicotine-mediated improvement in L-dopa-induced dyskinesias in MPTP-lesioned monkeys is dependent on dopamine nerve terminal function. Neurobiology of Disease, 50, 30–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quik, M., Mallela, A., Ly, J., & Zhang, D. (2013d). Nicotine reduces established levodopa-induced dyskinesias in a monkey model of Parkinson’s disease. Movement Disorders, 28(10), 1398–1406.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quik, M., Zhang, D., Perez, X. A., & Bordia, T. (2014). Role for the nicotinic cholinergic system in movement disorders; therapeutic implications. Pharmacology and Therapeutics, 144(1), 50–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quik, M., Zhang, D., McGregor, M., & Bordia, T. (2015). Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s disease. Biochemical Pharmacology, 97(4), 399–407.

    Article  CAS  PubMed  Google Scholar 

  • Quinn, N. P. (1998). Classification of fluctuations in patients with Parkinson’s disease. Neurology, 51(2 Suppl 2), S25–S29.

    Article  CAS  PubMed  Google Scholar 

  • Quinn, N., Marsden, C. D., & Parkes, J. D. (1982). Complicated response fluctuations in Parkinson’s disease: response to intravenous infusion of levodopa. Lancet, 2(8295), 412–415.

    Article  CAS  PubMed  Google Scholar 

  • Rhodes, J. D., Hawk, L. W., Jr., Ashare, R. L., Schlienz, N. J., & Mahoney, M. C. (2012). The effects of varenicline on attention and inhibitory control among treatment-seeking smokers. Psychopharmacology, 223(2), 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Rice, M. E., & Cragg, S. J. (2004). Nicotine amplifies reward-related dopamine signals in striatum. Nature Neuroscience, 7(6), 583–584.

    Article  CAS  PubMed  Google Scholar 

  • Ritz, B., Ascherio, A., Checkoway, H., Marder, K. S., Nelson, L. M., Rocca, W. A., Ross, G. W., Strickland, D., Van Den Eeden, S. K., & Gorell, J. (2007). Pooled analysis of tobacco use and risk of Parkinson disease. Archives of Neurology, 64(7), 990–997.

    Article  PubMed  Google Scholar 

  • Riveles, K., Huang, L. Z., & Quik, M. (2008). Cigarette smoke, nicotine and cotinine protect against 6-hydroxydopamine-induced toxicity in SH-SY5Y cells. Neurotoxicology, 29(3), 421–427.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rizzone, M. G., Fasano, A., Daniele, A., Zibetti, M., Merola, A., Rizzi, L., Piano, C., Piccininni, C., Romito, L. M., Lopiano, L., & Albanese, A. (2014). Long-term outcome of subthalamic nucleus DBS in Parkinson’s disease: from the advanced phase towards the late stage of the disease? Parkinsonism & Related Disorders, 20(4), 376–381.

    Article  CAS  Google Scholar 

  • Ryan, R. E., Ross, S. A., Drago, J., & Loiacono, R. E. (2001). Dose-related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in alpha4 nicotinic receptor subunit knockout mice. British Journal of Pharmacology, 132(8), 1650–1656.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sarre, S., Yuan, H., Jonkers, N., Van Hemelrijck, A., Ebinger, G., & Michotte, Y. (2004). In vivo characterization of somatodendritic dopamine release in the substantia nigra of 6-hydroxydopamine-lesioned rats. Journal of Neurochemistry, 90(1), 29–39.

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer, E., Pilotto, A., & Berg, D. (2014). Pharmacological strategies for the management of levodopa-induced dyskinesia in patients with Parkinson’s disease. CNS Drugs, 28(12), 1155–1184.

    Article  CAS  PubMed  Google Scholar 

  • Schallert, T., Fleming, S. M., Leasure, J. L., Tillerson, J. L., & Bland, S. T. (2000). CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology, 39(5), 777–787.

    Article  CAS  PubMed  Google Scholar 

  • Schapira, A. H., & Jenner, P. (2011). Etiology and pathogenesis of Parkinson’s disease. Movement Disorders, 26(6), 1049–1055.

    Article  PubMed  Google Scholar 

  • Searles Nielsen, S., Gallagher, L. G., Lundin, J. I., Longstreth, W. T., Jr., Smith-Weller, T., Franklin, G. M., Swanson, P. D., & Checkoway, H. (2012). Environmental tobacco smoke and Parkinson’s disease. Movement Disorders, 27(2), 293–296.

    Article  PubMed  Google Scholar 

  • Serriere, S., Domene, A., Vercouillie, J., Mothes, C., Bodard, S., Rodrigues, N., Guilloteau, D., Routier, S., Page, G., & Chalon, S. (2015). Assessment of the Protection of Dopaminergic Neurons by an alpha7 Nicotinic Receptor Agonist, PHA 543613 Using [(18)F]LBT-999 in a Parkinson’s Disease Rat Model. Frontiers in Medicine, 2, 61.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shim, J. C., Jung, D. U., Jung, S. S., Seo, Y. S., Cho, D. M., Lee, J. H., Lee, S. W., Kong, B. G., Kang, J. W., Oh, M. K., Kim, S. D., McMahon, R. P., & Kelly, D. L. (2012). Adjunctive varenicline treatment with antipsychotic medications for cognitive impairments in people with schizophrenia: a randomized double-blind placebo-controlled trial. Neuropsychopharmacology, 37(3), 660–668.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimohama, S. (2009). Nicotinic receptor-mediated neuroprotection in neurodegenerative disease models. Biological and Pharmaceutical Bulletin, 32(3), 332–336.

    Article  CAS  PubMed  Google Scholar 

  • Shimohama, S., Akaike, A., & Kimura, J. (1996). Nicotine-induced protection against glutamate cytotoxicity. Nicotinic cholinergic receptor-mediated inhibition of nitric oxide formation. Annals of the New York Academy of Sciences, 777, 356–361.

    Article  CAS  PubMed  Google Scholar 

  • Shimoji, M., Zhang, L., Mandir, A. S., Dawson, V. L., & Dawson, T. M. (2005). Absence of inclusion body formation in the MPTP mouse model of Parkinson’s disease. Brain Research. Molecular Brain Research, 134(1), 103–108.

    Article  CAS  PubMed  Google Scholar 

  • Soto-Otero, R., Mendez-Alvarez, E., Hermida-Ameijeiras, A., Lopez-Real, A. M., & Labandeira-Garcia, J. L. (2002). Effects of (−)-nicotine and (−)-cotinine on 6-hydroxydopamine-induced oxidative stress and neurotoxicity: relevance for Parkinson’s disease. Biochemical Pharmacology, 64(1), 125–135.

    Article  CAS  PubMed  Google Scholar 

  • Stuckenholz, V., Bacher, M., Balzer-Geldsetzer, M., Alvarez-Fischer, D., Oertel, W. H., Dodel, R. C., & Noelker, C. (2013). The alpha7 nAChR agonist PNU-282987 reduces inflammation and MPTP-induced nigral dopaminergic cell loss in mice. Journal of Parkinson’s Disease, 3(2), 161–172.

    CAS  PubMed  Google Scholar 

  • Suzuki, S., Kawamata, J., Matsushita, T., Matsumura, A., Hisahara, S., Takata, K., Kitamura, Y., Kem, W., & Shimohama, S. (2013). 3-[(2,4-Dimethoxy)benzylidene]-anabaseine dihydrochloride protects against 6-hydroxydopamine-induced parkinsonian neurodegeneration through alpha7 nicotinic acetylcholine receptor stimulation in rats. Journal of Neuroscience Research, 91(3), 462–471.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, H., Yanagida, T., Inden, M., Takata, K., Kitamura, Y., Yamakawa, K., Sawada, H., Izumi, Y., Yamamoto, N., Kihara, T., Uemura, K., Inoue, H., Taniguchi, T., Akaike, A., Takahashi, R., & Shimohama, S. (2009). Nicotinic receptor stimulation protects nigral dopaminergic neurons in rotenone-induced Parkinson’s disease models. Journal of Neuroscience Research, 87(2), 576–585.

    Article  CAS  PubMed  Google Scholar 

  • Tambasco, N., Simoni, S., Marsili, E., Sacchini, E., Murasecco, D., Cardaioli, G., Rossi, A., & Calabresi, P. (2012). Clinical aspects and management of levodopa-induced dyskinesia. Journal of Parkinson’s Disease, 2012, 745947.

    Google Scholar 

  • Tan, L. C., Protell, P. H., Langston, J. W., & Togasaki, D. M. (2002). The hyperkinetic abnormal movements scale: a tool for measuring levodopa-induced abnormal movements in squirrel monkeys. Movement Disorders, 17(5), 902–909.

    Article  PubMed  Google Scholar 

  • Tanner, C. M. (2010). Advances in environmental epidemiology. Movement Disorders, 25(Suppl 1), S58–S62.

    Article  PubMed  Google Scholar 

  • Taylor, T. N., Greene, J. G., & Miller, G. W. (2010). Behavioral phenotyping of mouse models of Parkinson’s disease. Behavioural Brain Research, 211(1), 1–10.

    Article  PubMed Central  PubMed  Google Scholar 

  • Terzioglu, M., & Galter, D. (2008). Parkinson’s disease: genetic versus toxin-induced rodent models. FEBS Journal, 275(7), 1384–1391.

    Article  CAS  PubMed  Google Scholar 

  • Tieu, K. (2011). A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harbor Perspectives in Medicine, 1(1), a009316.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ungerstedt, U. (1968). 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. European Journal of Pharmacology, 5(1), 107–110.

    Article  CAS  PubMed  Google Scholar 

  • Valadas, J. S., Vos, M., & Verstreken, P. (2015). Therapeutic strategies in Parkinson’s disease: what we have learned from animal models. Annals of the New York Academy of Sciences, 1338, 16–37.

    Article  CAS  PubMed  Google Scholar 

  • Vieira-Brock, P.L., McFadden, L.M., Nielsen, S.M., Ellis, J.D., Walters, E.T., Stout, K.A., McIntosh, J.M., Wilkins, D.G., Hanson, G.R., Fleckenstein, A.E. (2015) Chronic Nicotine Exposure Attenuates Methamphetamine-Induced Dopaminergic Deficits. Journal of Pharmacology and Experimental Therapeutics.

  • Vieregge, A., Sieberer, M., Jacobs, H., Hagenah, J. M., & Vieregge, P. (2001). Transdermal nicotine in PD: a randomized, double-blind, placebo-controlled study. Neurology, 57(6), 1032–1035.

    Article  CAS  PubMed  Google Scholar 

  • Villafane, G., Cesaro, P., Rialland, A., Baloul, S., Azimi, S., Bourdet, C., Le Houezec, J., Macquin-Mavier, I., & Maison, P. (2007). Chronic high dose transdermal nicotine in Parkinson’s disease: an open trial. European Journal of Neurology, 14(12), 1313–1316.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, T. L., & Porter, R. H. (2011). Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochemical Pharmacology, 82(8), 891–903.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, T. L., Callahan, P. M., Tehim, A., Bertrand, D., Tombaugh, G., Wang, S., Xie, W., Rowe, W. B., Ong, V., Graham, E., Terry, A. V., Jr., Rodefer, J. S., Herbert, B., Murray, M., Porter, R., Santarelli, L., & Lowe, D. A. (2011). RG3487, a novel nicotinic alpha7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. Journal of Pharmacol and Experimental Therapeutics, 336(1), 242–253.

    Article  CAS  Google Scholar 

  • Wichmann, T., DeLong, M. R., Guridi, J., & Obeso, J. A. (2011). Milestones in research on the pathophysiology of Parkinson’s disease. Movement Disorders, 26(6), 1032–1041.

    Article  PubMed Central  PubMed  Google Scholar 

  • Winkler, C., Kirik, D., Bjorklund, A., & Cenci, M. A. (2002). L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiology of Disease, 10(2), 165–186.

    Article  PubMed  Google Scholar 

  • Wirdefeldt, K., Adami, H. O., Cole, P., Trichopoulos, D., & Mandel, J. (2011). Epidemiology and etiology of Parkinson’s disease: a review of the evidence. European Journal of Epidemiology, 26(Suppl 1), S1–S58.

    Article  PubMed  Google Scholar 

  • Wullner, U., Pakzaban, P., Brownell, A. L., Hantraye, P., Burns, L., Shoup, T., Elmaleh, D., Petto, A. J., Spealman, R. D., Brownell, G. L., et al. (1994). Dopamine terminal loss and onset of motor symptoms in MPTP-treated monkeys: a positron emission tomography study with 11C-CFT. Experimental Neurology, 126(2), 305–309.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., & Sulzer, D. (2004). Frequency-dependent modulation of dopamine release by nicotine. Nature Neuroscience, 7(6), 581–582.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D., Mallela, A., Sohn, D., Carroll, F. I., Bencherif, M., Letchworth, S., & Quik, M. (2013). Nicotinic receptor agonists reduce L-DOPA-induced dyskinesias in a monkey model of Parkinson’s disease. Journal of Pharmacol and Experimental Therapeutics, 347(1), 225–234.

    Article  CAS  Google Scholar 

  • Zhang, D., Bordia, T., McGregor, M., McIntosh, J. M., Decker, M. W., & Quik, M. (2014a). ABT-089 and ABT-894 reduce levodopa-induced dyskinesias in a monkey model of Parkinson’s disease. Movement Disorders, 29(4), 508–517.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang, D., McGregor, M., Decker, M. W., & Quik, M. (2014b). The alpha7 nicotinic receptor agonist ABT-107 decreases L-Dopa-induced dyskinesias in parkinsonian monkeys. Journal of Pharmacol and Experimental Therapeutics, 351(1), 25–32.

    Article  CAS  Google Scholar 

  • Zhang, D., McGregor, M., Bordia, T., Perez, X.A., Decker, M.W., Quik, M. (2015a). The alpha7 nicotinic receptor agonist ABT-126 decreases l-Dopa-induced dyskinesias in MPTP-lesioned monkeys, in Society for neuroscience, Chicago, IL.

  • Zhang, D., McGregor, M., Bordia, T., Perez, X.A., McIntosh, J.M., Decker, M.W., Quik, M. (2015b). α7 nicotinic receptor agonists decrease levodopa-induced dyskinesias in monkeys with moderate and severe nigrostriatal damage. Movement disorders In Press.

  • Zhou, F. M., Liang, Y., & Dani, J. A. (2001). Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nature Neuroscience, 4(12), 1224–1229.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Maryka Quik and Dr. Tanuja Bordia for helpful discussion and reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiomara A. Perez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez, X.A. Preclinical Evidence for a Role of the Nicotinic Cholinergic System in Parkinson’s Disease. Neuropsychol Rev 25, 371–383 (2015). https://doi.org/10.1007/s11065-015-9303-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-015-9303-z

Keywords

Navigation