Skip to main content

Advertisement

Log in

Genetics and Underlying Pathology of Dementia

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

As the population steadily ages, dementia, in all its forms, remains a great societal challenge. Yet, our knowledge of their etiology remains rather limited. To this end, genetic studies can give us insight into the underlying mechanisms that lead to the development of dementia, potentially facilitating treatments in the future. In this review we cover the most recent genetic risk factors associated with the onset of the four most common dementia types today, including Alzheimer’s disease (AD), Vascular Dementia (VaD), Frontotemporal Lobar Degeneration (FTLD) and Lewy Body Dementia (LBD). Moreover, we discuss the overlap in major underlying pathologies of dementia derived from their genetic associations. While all four dementia types appear to involve genes associated with tau-pathology and neuroinflammation only LBD, AD and VaD appear to involve amyloid genes while LBD and FTLD share alpha synuclein genes. Together these findings suggest that some of the dementias may exist along a spectrum and demonstrates the necessity to conduct large-scale studies pinpointing the etiology of the dementias and potential gene and environment interactions that may influence their development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alam, R., Tripathi, M., Mansoori, N., Parveen, S., Luthra, K., Lakshmy, R., et al. (2014). Synergistic Epistasis of Paraoxonase 1 (rs662 and rs85460) and apolipoprotein E4 genes in pathogenesis of Alzheimer’s disease and vascular dementia. American Journal of Alzheimer’s Disease and Other Dementias. doi:10.1177/1533317514539541.

    Google Scholar 

  • Altman, R., & Rutledge, J. C. (2010). The vascular contribution to Alzheimer’s disease. Clinical Science (London), 119(10), 407–421. doi:10.1042/cs20100094.

    CAS  Google Scholar 

  • Baig, S., Joseph, S. A., Tayler, H., Abraham, R., Owen, M. J., Williams, J., et al. (2010). Distribution and expression of picalm in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 69(10), 1071–1077. doi:10.1097/NEN.0b013e3181f52e01.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baker, M., Mackenzie, I. R., Pickering-Brown, S. M., Gass, J., Rademakers, R., Lindholm, C., et al. (2006). Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature, 442(7105), 916–919. doi:10.1038/nature05016.

    CAS  PubMed  Google Scholar 

  • Bates, K. A., Verdile, G., Li, Q. X., Ames, D., Hudson, P., Masters, C. L., et al. (2009). Clearance mechanisms of Alzheimer’s amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Molecular Psychiatry, 14(5), 469–486. doi:10.1038/mp.2008.96.

    CAS  PubMed  Google Scholar 

  • Beecham, G. W., Hamilton, K., Naj, A. C., Martin, E. R., Huentelman, M., Myers, A. J., et al. (2014). Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genetics, 10(9), e1004606. doi:10.1371/journal.pgen.1004606.

    PubMed Central  PubMed  Google Scholar 

  • Bergem, A. L., Engedal, K., & Kringlen, E. (1997). The role of heredity in late-onset Alzheimer disease and vascular dementia. A twin study. Archives of General Psychiatry, 54(3), 264–270.

    CAS  PubMed  Google Scholar 

  • Bogaerts, V., Engelborghs, S., Kumar-Singh, S., Goossens, D., Pickut, B., van der Zee, J., et al. (2007). A novel locus for dementia with Lewy bodies: a clinically and genetically heterogeneous disorder. Brain, 130(Pt 9), 2277–2291. doi:10.1093/brain/awm167.

    PubMed  Google Scholar 

  • Borroni, B., Grassi, M., Costanzi, C., Archetti, S., Caimi, L., & Padovani, A. (2006). APOE genotype and cholesterol levels in lewy body dementia and Alzheimer disease: investigating genotype-phenotype effect on disease risk. The American Journal of Geriatric Psychiatry, 14(12), 1022–1031. doi:10.1097/01.jgp.0000225088.29353.08.

    PubMed  Google Scholar 

  • Bostrom, F., Jonsson, L., Minthon, L., & Londos, E. (2007). Patients with Lewy body dementia use more resources than those with Alzheimer’s disease. International Journal of Geriatric Psychiatry, 22(8), 713–719. doi:10.1002/gps.1738.

    PubMed  Google Scholar 

  • Bras, J., Guerreiro, R., Darwent, L., Parkkinen, L., Ansorge, O., Escott-Price, V., et al. (2014). Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of Dementia with Lewy Bodies. Human Molecular Genetics. doi:10.1093/hmg/ddu334.

    Google Scholar 

  • Chapman, J., Wang, N., Treves, T. A., Korczyn, A. D., & Bornstein, N. M. (1998). ACE, MTHFR, factor V Leiden, and APOE polymorphisms in patients with vascular and Alzheimer’s dementia. Stroke, 29(7), 1401–1404.

    CAS  PubMed  Google Scholar 

  • Clark, L. N., Kartsaklis, L. A., Wolf Gilbert, R., Dorado, B., Ross, B. M., Kisselev, S., et al. (2009). Association of glucocerebrosidase mutations with dementia with lewy bodies. Archives of Neurology, 66(5), 578–583. doi:10.1001/archneurol.2009.54.

    PubMed Central  PubMed  Google Scholar 

  • Colom-Cadena, M., Gelpi, E., Charif, S., Belbin, O., Blesa, R., Marti, M. J., et al. (2013). Confluence of alpha-synuclein, tau, and beta-amyloid pathologies in dementia with Lewy bodies. Journal of Neuropathology and Experimental Neurology, 72(12), 1203–1212. doi:10.1097/nen.0000000000000018.

    CAS  PubMed  Google Scholar 

  • Cook, L. J., Ho, L. W., Taylor, A. E., Brayne, C., Evans, J. G., Xuereb, J., et al. (2004). Candidate gene association studies of the alpha 4 (CHRNA4) and beta 2 (CHRNB2) neuronal nicotinic acetylcholine receptor subunit genes in Alzheimer’s disease. Neuroscience Letters, 358(2), 142–146. doi:10.1016/j.neulet.2004.01.016.

    CAS  PubMed  Google Scholar 

  • Deelen, J., Beekman, M., Uh, H. W., Broer, L., Ayers, K. L., Tan, Q., et al. (2014). Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Human Molecular Genetics, 23(16), 4420–4432. doi:10.1093/hmg/ddu139.

    PubMed Central  CAS  PubMed  Google Scholar 

  • DeMattos, R. B., O’Dell, M. A., Parsadanian, M., Taylor, J. W., Harmony, J. A., Bales, K. R., et al. (2002). Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10843–10848. doi:10.1073/pnas.162228299.

    PubMed Central  CAS  PubMed  Google Scholar 

  • DeMattos, R. B., Cirrito, J. R., Parsadanian, M., May, P. C., O’Dell, M. A., Taylor, J. W., et al. (2004). ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron, 41(2), 193–202.

    CAS  PubMed  Google Scholar 

  • Dementia Report United Kingdom (2007). London.

  • Devenney, E., Hornberger, M., Irish, M., Mioshi, E., Burrell, J., Tan, R., et al. (2014). Frontotemporal dementia associated with the C9ORF72 mutation: a unique clinical profile. JAMA Neurology, 71(3), 331–339. doi:10.1001/jamaneurol.2013.6002.

    PubMed  Google Scholar 

  • Federico, A., Bianchi, S., & Dotti, M. T. (2005). The spectrum of mutations for CADASIL diagnosis. Neurological Science, 26(2), 117–124. doi:10.1007/s10072-005-0444-3.

    CAS  Google Scholar 

  • Federico, A., Di Donato, I., Bianchi, S., Di Palma, C., Taglia, I., & Dotti, M. T. (2012). Hereditary cerebral small vessel diseases: a review. Journal of Neurological Sciences, 322(1–2), 25–30. doi:10.1016/j.jns.2012.07.041.

    Google Scholar 

  • Ferencz, B., Karlsson, S., & Kalpouzos, G. (2012). Promising genetic biomarkers of preclinical Alzheimer’s disease: the influence of APOE and TOMM40 on brain integrity. International Journal of Alzheimer’s Disease, 2012, 421452. doi:10.1155/2012/421452.

    PubMed Central  PubMed  Google Scholar 

  • Ferrari, R., Hardy, J., & Momeni, P. (2011). Frontotemporal dementia: from Mendelian genetics towards genome wide association studies. Journal of Molecular Neuroscience, 45(3), 500–515. doi:10.1007/s12031-011-9635-y.

    CAS  PubMed  Google Scholar 

  • Ferrari, R., Hernandez, D. G., Nalls, M. A., Rohrer, J. D., Ramasamy, A., Kwok, J. B., et al. (2014). Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, 13(7), 686–699. doi:10.1016/s1474-4422(14)70065-1.

    Google Scholar 

  • Fuchs, J., Nilsson, C., Kachergus, J., Munz, M., Larsson, E. M., Schule, B., et al. (2007). Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology, 68(12), 916–922. doi:10.1212/01.wnl.0000254458.17630.c5.

    CAS  PubMed  Google Scholar 

  • Gatz, M., Reynolds, C. A., Finkel, D., Pedersen, N. L., & Walters, E. (2010). Dementia in Swedish twins: predicting incident cases. Behavior Genetics, 40(6), 768–775. doi:10.1007/s10519-010-9407-4.

    PubMed Central  PubMed  Google Scholar 

  • Genin, E., Hannequin, D., Wallon, D., Sleegers, K., Hiltunen, M., Combarros, O., et al. (2011). APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Molecular Psychiatry, 16(9), 903–907. doi:10.1038/mp.2011.52.

    PubMed Central  CAS  PubMed  Google Scholar 

  • George, J. M. (2002). The synucleins. Genome Biology, 3(1). REVIEWS3002.

  • Gijselinck, I., Van Langenhove, T., van der Zee, J., Sleegers, K., Philtjens, S., Kleinberger, G., et al. (2012). A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurology, 11(1), 54–65. doi:10.1016/s1474-4422(11)70261-7.

    CAS  Google Scholar 

  • Glenner, G. G., & Wong, C. W. (1984). Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications, 120(3), 885–890.

    CAS  PubMed  Google Scholar 

  • Gudala, K., Bansal, D., & Muthyala, H. (2013). Role of serum cholesterol in Parkinson’s disease: a meta-analysis of evidence. Journal of Parkinsons Disease, 3(3), 363–370. doi:10.3233/jpd-130196.

    CAS  Google Scholar 

  • Gusareva, E. S., Carrasquillo, M. M., Bellenguez, C., Cuyvers, E., Colon, S., Graff-Radford, N. R., et al. (2014). Genome-wide association interaction analysis for Alzheimer’s disease. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2014.05.014.

    PubMed  Google Scholar 

  • Hanson, J. C., & Lippa, C. F. (2009). Lewy body dementia. International Review of Neurobiology, 84, 215–228. doi:10.1016/s0074-7742(09)00411-5.

    CAS  PubMed  Google Scholar 

  • Hardy, J., Guerreiro, R., & Lovestone, S. (2011). Clusterin as an Alzheimer biomarker. Archives of Neurology, 68(11), 1459–1460. doi:10.1001/archneurol.2011.1000.

    PubMed  Google Scholar 

  • Harel, A., Wu, F., Mattson, M. P., Morris, C. M., & Yao, P. J. (2008). Evidence for CALM in directing VAMP2 trafficking. Traffic, 9(3), 417–429. doi:10.1111/j.1600-0854.2007.00694.x.

    CAS  PubMed  Google Scholar 

  • Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., et al. (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nature Genetics, 41(10), 1088–1093. doi:10.1038/ng.440.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hely, M. A., Reid, W. G., Adena, M. A., Halliday, G. M., & Morris, J. G. (2008). The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Movement Disorders, 23(6), 837–844. doi:10.1002/mds.21956.

    PubMed  Google Scholar 

  • Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J. C., Carrasquillo, M. M., et al. (2011). Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nature Genetics, 43(5), 429–435. doi:10.1038/ng.803.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jones, L., Holmans, P. A., Hamshere, M. L., Harold, D., Moskvina, V., Ivanov, D., et al. (2010). Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS One, 5(11), e13950. doi:10.1371/journal.pone.0013950.

    PubMed Central  PubMed  Google Scholar 

  • Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., et al. (2012). A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature, 488(7409), 96–99. doi:10.1038/nature11283.

    CAS  PubMed  Google Scholar 

  • Kara, E., Kiely, A. P., Proukakis, C., Giffin, N., Love, S., Hehir, J., et al. (2014). 6.4 Mb duplication of the alpha-Synuclein Locus causing frontotemporal dementia and Parkinsonism: phenotype-genotype correlations. JAMA Neurology. doi:10.1001/jamaneurol.2014.994.

    PubMed Central  PubMed  Google Scholar 

  • Karageorgiou, E., & Miller, B. L. (2014). Frontotemporal lobar degeneration: a clinical approach. Seminars in Neurology, 34(2), 189–201. doi:10.1055/s-0034-1381735.

    PubMed  Google Scholar 

  • Karch, C. M., & Goate, A. M. (2014). Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biological Psychiatry. doi:10.1016/j.biopsych.2014.05.006.

    PubMed  Google Scholar 

  • Karch, C. M., Jeng, A. T., Nowotny, P., Cady, J., Cruchaga, C., & Goate, A. M. (2012). Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS One, 7(11), e50976. doi:10.1371/journal.pone.0050976.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karch, C. M., Cruchaga, C., & Goate, A. M. (2014). Alzheimer’s disease genetics: from the bench to the clinic. Neuron, 83(1), 11–26. doi:10.1016/j.neuron.2014.05.041.

    CAS  PubMed  Google Scholar 

  • Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2010). Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurology, 9(12), 1200–1213. doi:10.1016/s1474-4422(10)70212-x.

    Google Scholar 

  • Kehoe, P. G., Russ, C., McIlory, S., Williams, H., Holmans, P., Holmes, C., et al. (1999). Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nature Genetics, 21(1), 71–72. doi:10.1038/5009.

    CAS  PubMed  Google Scholar 

  • Khera, R., & Das, N. (2009). Complement receptor 1: disease associations and therapeutic implications. Molecular Immunology, 46(5), 761–772. doi:10.1016/j.molimm.2008.09.026.

    CAS  PubMed  Google Scholar 

  • Kim, M., Suh, J., Romano, D., Truong, M. H., Mullin, K., Hooli, B., et al. (2009a). Potential late-onset Alzheimer’s disease-associated mutations in the ADAM10 gene attenuate {alpha}-secretase activity. Human Molecular Genetics, 18(20), 3987–3996. doi:10.1093/hmg/ddp323.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim, Y., Park, J., & Lee, C. (2009b). Multilocus genotypic association with vascular dementia by multifactor dimensionality reduction and entropy-based estimation. Psychiatric Genetics, 19(5), 253–258. doi:10.1097/YPG.0b013e32832ceebd.

    PubMed  Google Scholar 

  • Kim, Y., Kong, M., & Lee, C. (2013). Association of intronic sequence variant in the gene encoding spleen tyrosine kinase with susceptibility to vascular dementia. World Journal of Biological Psychiatry, 14(3), 220–226. doi:10.3109/15622975.2011.559272.

    PubMed  Google Scholar 

  • Kirshner, H. S. (2014). Frontotemporal dementia and primary progressive aphasia, a review. Neuropsychiatric Disease and Treatment, 10, 1045–1055. doi:10.2147/ndt.s38821.

    PubMed Central  PubMed  Google Scholar 

  • Kong, M., Kim, Y., & Lee, C. (2011). A strong synergistic epistasis between FAM134B and TNFRSF19 on the susceptibility to vascular dementia. Psychiatric Genetics, 21(1), 37–41. doi:10.1097/YPG.0b013e3283413496.

    PubMed  Google Scholar 

  • Lambert, J. C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., et al. (2009). Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nature Genetics, 41(10), 1094–1099. doi:10.1038/ng.439.

    CAS  PubMed  Google Scholar 

  • Lambert, J. C., Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R., Bellenguez, C., et al. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nature Genetics, 45(12), 1452–1458. doi:10.1038/ng.2802.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lathe, R., Sapronova, A., & Kotelevtsev, Y. (2014). Atherosclerosis and Alzheimer - diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatrics, 14, 36. doi:10.1186/1471-2318-14-36.

    PubMed Central  PubMed  Google Scholar 

  • Le Ber, I. (2013). Genetics of frontotemporal lobar degeneration: an up-date and diagnosis algorithm. Revue Neurologique (Paris), 169(10), 811–819. doi:10.1016/j.neurol.2013.07.014.

    Google Scholar 

  • Leduc, V., Jasmin-Belanger, S., & Poirier, J. (2010). APOE and cholesterol homeostasis in Alzheimer’s disease. Trends in Molecular Medicine, 16(10), 469–477. doi:10.1016/j.molmed.2010.07.008.

    CAS  PubMed  Google Scholar 

  • Lee, C., & Kim, Y. (2013). Complex genetic susceptibility to vascular dementia and an evidence for its underlying genetic factors associated with memory and associative learning. Gene, 516(1), 152–157. doi:10.1016/j.gene.2012.12.032.

    CAS  PubMed  Google Scholar 

  • Li, Y., Grupe, A., Rowland, C., Nowotny, P., Kauwe, J. S., Smemo, S., et al. (2006). DAPK1 variants are associated with Alzheimer’s disease and allele-specific expression. Human Molecular Genetics, 15(17), 2560–2568. doi:10.1093/hmg/ddl178.

    CAS  PubMed  Google Scholar 

  • Li, K., Liu, S., Yao, S., Wang, B., Dai, D., & Yao, L. (2009). Interaction between interleukin-8 and methylenetetrahydrofolate reductase genes modulates Alzheimer’s disease risk. Dementia and Geriatric Cognitive Disorders, 27(3), 286–291. doi:10.1159/000204766.

    CAS  PubMed  Google Scholar 

  • Linnertz, C., Lutz, M. W., Ervin, J. F., Allen, J., Miller, N. R., Welsh-Bohmer, K. A., et al. (2014). The genetic contributions of SNCA and LRRK2 genes to Lewy body pathology in Alzheimer’s disease. Human Molecular Genetics. doi:10.1093/hmg/ddu196.

    PubMed  Google Scholar 

  • Magaki, S., Yong, W. H., Khanlou, N., Tung, S., & Vinters, H. V. (2014). Comorbidity in dementia: update of an ongoing autopsy study. Journal of the American Geriatrics Society. doi:10.1111/jgs.12977.

    PubMed  Google Scholar 

  • Maia, L. F., Mackenzie, I. R., & Feldman, H. H. (2007). Clinical phenotypes of cerebral amyloid angiopathy. Journal of Neurological Sciences, 257(1–2), 23–30. doi:10.1016/j.jns.2007.01.054.

    Google Scholar 

  • Mata, I. F., Samii, A., Schneer, S. H., Roberts, J. W., Griffith, A., Leis, B. C., et al. (2008). Glucocerebrosidase gene mutations: a risk factor for Lewy body disorders. Archives of Neurology, 65(3), 379–382. doi:10.1001/archneurol.2007.68.

    PubMed Central  PubMed  Google Scholar 

  • McGeer, E. G., & McGeer, P. L. (2001). Innate immunity in Alzheimer’s disease: a model for local inflammatory reactions. Molecular Interventions, 1(1), 22–29.

    CAS  PubMed  Google Scholar 

  • McKeith, I. G., Galasko, D., Kosaka, K., Perry, E. K., Dickson, D. W., Hansen, L. A., et al. (1996). Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology, 47(5), 1113–1124.

    CAS  PubMed  Google Scholar 

  • Meeus, B., Theuns, J., & Van Broeckhoven, C. (2012). The genetics of dementia with Lewy bodies: what are we missing? Archives of Neurology, 69(9), 1113–1118. doi:10.1001/archneurol.2011.3678.

    PubMed  Google Scholar 

  • Miklya, I., Pencz, N., Hafenscher, F., & Goltl, P. (2014). The role of alpha-synuclein in Parkinson’s disease. Neuropsychopharmacologia Hungarica, 16(2), 77–84.

    PubMed  Google Scholar 

  • Mollenhauer, B., Forstl, H., Deuschl, G., Storch, A., Oertel, W., & Trenkwalder, C. (2010). Lewy body and Parkinsonian dementia: common, but often misdiagnosed conditions. Deutsches Ärzteblatt International, 107(39), 684–691. doi:10.3238/arztebl.2010.0684.

    PubMed Central  PubMed  Google Scholar 

  • Momeni, P., Rogaeva, E., Van Deerlin, V., Yuan, W., Grafman, J., Tierney, M., et al. (2006). Genetic variability in CHMP2B and frontotemporal dementia. Neurodegenerative Diseases, 3(3), 129–133. doi:10.1159/000094771.

    CAS  PubMed  Google Scholar 

  • Moore, S. F., & Barker, R. A. (2014). Predictors of Parkinson’s disease dementia: towards targeted therapies for a heterogeneous disease. Parkinsonism & Related Disorders, 20(Suppl 1), S104–S107. doi:10.1016/s1353-8020(13)70026-9.

    Google Scholar 

  • Naj, A. C., Jun, G., Beecham, G. W., Wang, L. S., Vardarajan, B. N., Buros, J., et al. (2011). Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nature Genetics, 43(5), 436–441. doi:10.1038/ng.801.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nervi, A., Reitz, C., Tang, M. X., Santana, V., Piriz, A., Reyes, D., et al. (2011). Familial aggregation of dementia with Lewy bodies. Archives of Neurology, 68(1), 90–93. doi:10.1001/archneurol.2010.319.

    PubMed Central  PubMed  Google Scholar 

  • Nishioka, K., Wider, C., Vilarino-Guell, C., Soto-Ortolaza, A. I., Lincoln, S. J., Kachergus, J. M., et al. (2010). Association of alpha-, beta-, and gamma-Synuclein with diffuse lewy body disease. Archives of Neurology, 67(8), 970–975. doi:10.1001/archneurol.2010.177.

    PubMed  Google Scholar 

  • Nuutinen, T., Suuronen, T., Kauppinen, A., & Salminen, A. (2009). Clusterin: a forgotten player in Alzheimer’s disease. Brain Research Reviews, 61(2), 89–104. doi:10.1016/j.brainresrev.2009.05.007.

    CAS  PubMed  Google Scholar 

  • Oesterhus, R., Soennesyn, H., Rongve, A., Ballard, C., Aarsland, D., & Vossius, C. (2014). Long-term mortality in a cohort of home-dwelling elderly with mild Alzheimer’s disease and Lewy body dementia. Dementia and Geriatric Cognitive Disorders, 38(3–4), 161–169. doi:10.1159/000358051.

    PubMed  Google Scholar 

  • Olesen, O. F., Mikkelsen, J. D., Gerdes, C., & Jensen, P. H. (1997). Isoform-specific binding of human apolipoprotein E to the non-amyloid beta component of Alzheimer’s disease amyloid. Brain Research. Molecular Brain Research, 44(1), 105–112.

    CAS  PubMed  Google Scholar 

  • Pant, S., Sharma, M., Patel, K., Caplan, S., Carr, C. M., & Grant, B. D. (2009). AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nature Cell Biology, 11(12), 1399–1410. doi:10.1038/ncb1986.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pericak-Vance, M. A., Bebout, J. L., Gaskell, P. C., Jr., Yamaoka, L. H., Hung, W. Y., Alberts, M. J., et al. (1991). Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. American Journal of Human Genetics, 48(6), 1034–1050.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pohjasvaara, T., Mantyla, R., Ylikoski, R., Kaste, M., & Erkinjuntti, T. (2003). Clinical features of MRI-defined subcortical vascular disease. Alzheimer Disease & Associated Disorders, 17(4), 236–242.

    Google Scholar 

  • Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., & Ferri, C. P. (2013). The global prevalence of dementia: a systematic review and metaanalysis. Alzheimer’s & Dementia, 9(1), 63–75. doi:10.1016/j.jalz.2012.11.007. e62.

    Google Scholar 

  • Qiu, C., von Strauss, E., Backman, L., Winblad, B., & Fratiglioni, L. (2013). Twenty-year changes in dementia occurrence suggest decreasing incidence in central Stockholm, Sweden. Neurology, 80(20), 1888–1894. doi:10.1212/WNL.0b013e318292a2f9.

    PubMed  Google Scholar 

  • Reitz, C. (2013). Dyslipidemia and the risk of Alzheimer’s disease. Current Atherosclerosis Reports, 15(3), 307. doi:10.1007/s11883-012-0307-3.

    PubMed Central  PubMed  Google Scholar 

  • Reitz, C., Tang, M. X., Luchsinger, J., & Mayeux, R. (2004). Relation of plasma lipids to Alzheimer disease and vascular dementia. Archives of Neurology, 61(5), 705–714. doi:10.1001/archneur.61.5.705.

    PubMed Central  PubMed  Google Scholar 

  • Ridge, P. G., Mukherjee, S., Crane, P. K., & Kauwe, J. S. (2013). Alzheimer’s disease: analyzing the missing heritability. PLoS One, 8(11), e79771. doi:10.1371/journal.pone.0079771.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ridolfi, E., Barone, C., Scarpini, E., & Galimberti, D. (2013). The role of the innate immune system in Alzheimer’s disease and frontotemporal lobar degeneration: an eye on microglia. Clinical and Developmental Immunology, 2013, 939786. doi:10.1155/2013/939786.

    PubMed Central  PubMed  Google Scholar 

  • Rogaeva, E., Meng, Y., Lee, J. H., Gu, Y., Kawarai, T., Zou, F., et al. (2007). The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genetics, 39(2), 168–177. doi:10.1038/ng1943.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rogers, J., Li, R., Mastroeni, D., Grover, A., Leonard, B., Ahern, G., et al. (2006). Peripheral clearance of amyloid beta peptide by complement C3-dependent adherence to erythrocytes. Neurobiology of Aging, 27(12), 1733–1739. doi:10.1016/j.neurobiolaging.2005.09.043.

    CAS  PubMed  Google Scholar 

  • Rohrer, J. D., Guerreiro, R., Vandrovcova, J., Uphill, J., Reiman, D., Beck, J., et al. (2009). The heritability and genetics of frontotemporal lobar degeneration. Neurology, 73(18), 1451–1456. doi:10.1212/WNL.0b013e3181bf997a.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roman, G. C., Tatemichi, T. K., Erkinjuntti, T., Cummings, J. L., Masdeu, J. C., Garcia, J. H., et al. (1993). Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology, 43(2), 250–260.

    CAS  PubMed  Google Scholar 

  • Rosenthal, S. L., & Kamboh, M. I. (2014). Late-onset Alzheimer’s disease genes and the potentially implicated pathways. Current Genetics Medicine Reports, 2, 85–101. doi:10.1007/s40142-014-0034-x.

    Google Scholar 

  • Roses, A. D., Lutz, M. W., Amrine-Madsen, H., Saunders, A. M., Crenshaw, D. G., Sundseth, S. S., et al. (2010). A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. The Pharmacogenomics Journal, 10(5), 375–384. doi:10.1038/tpj.2009.69.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Savica, R., Grossardt, B. R., Bower, J. H., Boeve, B. F., Ahlskog, J. E., & Rocca, W. A. (2013). Incidence of dementia with Lewy bodies and Parkinson disease dementia. JAMA Neurology, 70(11), 1396–1402. doi:10.1001/jamaneurol.2013.3579.

    PubMed Central  PubMed  Google Scholar 

  • Schjeide, B. M., Schnack, C., Lambert, J. C., Lill, C. M., Kirchheiner, J., Tumani, H., et al. (2011). The role of clusterin, complement receptor 1, and phosphatidylinositol binding clathrin assembly protein in Alzheimer disease risk and cerebrospinal fluid biomarker levels. Archives of General Psychiatry, 68(2), 207–213. doi:10.1001/archgenpsychiatry.2010.196.

    CAS  PubMed  Google Scholar 

  • Schmidt, H., Freudenberger, P., Seiler, S., & Schmidt, R. (2012). Genetics of subcortical vascular dementia. Experimental Gerontology, 47(11), 873–877. doi:10.1016/j.exger.2012.06.003.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schrijvers, E. M., Schurmann, B., Koudstaal, P. J., van den Bussche, H., Van Duijn, C. M., Hentschel, F., et al. (2012). Genome-wide association study of vascular dementia. Stroke, 43(2), 315–319. doi:10.1161/strokeaha.111.628768.

    PubMed  Google Scholar 

  • Seshadri, S., Fitzpatrick, A. L., Ikram, M. A., DeStefano, A. L., Gudnason, V., Boada, M., et al. (2010). Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA, 303(18), 1832–1840. doi:10.1001/jama.2010.574.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seto-Salvia, N., Clarimon, J., Pagonabarraga, J., Pascual-Sedano, B., Campolongo, A., Combarros, O., et al. (2011). Dementia risk in Parkinson disease: disentangling the role of MAPT haplotypes. Archives of Neurology, 68(3), 359–364. doi:10.1001/archneurol.2011.17.

    PubMed  Google Scholar 

  • Sieben, A., Van Langenhove, T., Engelborghs, S., Martin, J. J., Boon, P., Cras, P., et al. (2012). The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathologica, 124(3), 353–372. doi:10.1007/s00401-012-1029-x.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Skibinski, G., Parkinson, N. J., Brown, J. M., Chakrabarti, L., Lloyd, S. L., Hummerich, H., et al. (2005). Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature Genetics, 37(8), 806–808. doi:10.1038/ng1609.

    CAS  PubMed  Google Scholar 

  • Spillantini, M. G., & Goedert, M. (2013). Tau pathology and neurodegeneration. Lancet Neurology, 12(6), 609–622. doi:10.1016/s1474-4422(13)70090-5.

    CAS  Google Scholar 

  • Takei, N., Miyashita, A., Tsukie, T., Arai, H., Asada, T., Imagawa, M., et al. (2009). Genetic association study on in and around the APOE in late-onset Alzheimer disease in Japanese. Genomics, 93(5), 441–448. doi:10.1016/j.ygeno.2009.01.003.

    CAS  PubMed  Google Scholar 

  • Tang, W., Huang, Q., Yao, Y. Y., Wang, Y., Wu, Y. L., & Wang, Z. Y. (2014). Does CSF p-tau help to discriminate Alzheimer’s disease from other dementias and mild cognitive impairment? A meta-analysis of the literature. Journal of Neural Transmission. doi:10.1007/s00702-014-1226-y.

    Google Scholar 

  • Trougakos, I. P., & Gonos, E. S. (2006). Regulation of clusterin/apolipoprotein J, a functional homologue to the small heat shock proteins, by oxidative stress in ageing and age-related diseases. Free Radical Research, 40(12), 1324–1334. doi:10.1080/10715760600902310.

    CAS  PubMed  Google Scholar 

  • Tsuang, D., Leverenz, J. B., Lopez, O. L., Hamilton, R. L., Bennett, D. A., Schneider, J. A., et al. (2012). GBA mutations increase risk for Lewy body disease with and without Alzheimer disease pathology. Neurology, 79(19), 1944–1950. doi:10.1212/WNL.0b013e3182735e9a.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Urwin, H., Authier, A., Nielsen, J. E., Metcalf, D., Powell, C., Froud, K., et al. (2010). Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Human Molecular Genetics, 19(11), 2228–2238. doi:10.1093/hmg/ddq100.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Van Deerlin, V. M., Sleiman, P. M., Martinez-Lage, M., Chen-Plotkin, A., Wang, L. S., Graff-Radford, N. R., et al. (2010). Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nature Genetics, 42(3), 234–239. doi:10.1038/ng.536.

    PubMed Central  PubMed  Google Scholar 

  • van der Flier, W. M., & Scheltens, P. (2005). Epidemiology and risk factors of dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 76(Suppl 5), v2–v7. doi:10.1136/jnnp.2005.082867.

    PubMed Central  PubMed  Google Scholar 

  • van der Zee, J., Gijselinck, I., Dillen, L., Van Langenhove, T., Theuns, J., Engelborghs, S., et al. (2013). A pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Human Mutation, 34(2), 363–373. doi:10.1002/humu.22244.

    PubMed Central  PubMed  Google Scholar 

  • van Swieten, J., & Spillantini, M. G. (2007). Hereditary frontotemporal dementia caused by Tau gene mutations. Brain Pathology, 17(1), 63–73. doi:10.1111/j.1750-3639.2007.00052.x.

    PubMed  Google Scholar 

  • Wang, T., Baron, M., & Trump, D. (2008). An overview of Notch3 function in vascular smooth muscle cells. Progress in Biophysics and Molecular Biology, 96(1–3), 499–509. doi:10.1016/j.pbiomolbio.2007.07.006.

    CAS  PubMed  Google Scholar 

  • Wang, C. S., Burke, J. R., Steffens, D. C., Hulette, C. M., Breitner, J. C., & Plassman, B. L. (2009). Twin pairs discordant for neuropathologically confirmed Lewy body dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 80(5), 562–565. doi:10.1136/jnnp.2008.151654.

    PubMed Central  PubMed  Google Scholar 

  • Weihl, C. C., Temiz, P., Miller, S. E., Watts, G., Smith, C., Forman, M., et al. (2008). TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 79(10), 1186–1189. doi:10.1136/jnnp.2007.131334.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wider, C., Ross, O. A., Nishioka, K., Heckman, M. G., Vilarino-Guell, C., Jasinska-Myga, B., et al. (2012). An evaluation of the impact of MAPT, SNCA and APOE on the burden of Alzheimer’s and Lewy body pathology. Journal of Neurology, Neurosurgery, and Psychiatry, 83(4), 424–429. doi:10.1136/jnnp-2011-301413.

    PubMed Central  PubMed  Google Scholar 

  • Williams-Gray, C. H., Mason, S. L., Evans, J. R., Foltynie, T., Brayne, C., Robbins, T. W., et al. (2013). The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort. Journal of Neurology, Neurosurgery, and Psychiatry, 84(11), 1258–1264. doi:10.1136/jnnp-2013-305277.

    PubMed  Google Scholar 

  • Winslow, A. R., Moussaud, S., Zhu, L., Post, K. L., Dickson, D. W., Berezovska, O., et al. (2014). Convergence of pathology in dementia with Lewy bodies and Alzheimer’s disease: a role for the novel interaction of alpha-synuclein and presenilin 1 in disease. Brain, 137(Pt 7), 1958–1970. doi:10.1093/brain/awu119.

    PubMed  Google Scholar 

  • Yang, C., Swallows, C. L., Zhang, C., Lu, J., Xiao, H., Brady, R. O., et al. (2014). Celastrol increases glucocerebrosidase activity in Gaucher disease by modulating molecular chaperones. Proceedings of the National Academy of Sciences of the United States of America, 111(1), 249–254. doi:10.1073/pnas.1321341111.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu, X., Babar, A., Siedlak, S. L., Yang, Q., Ito, G., Iwatsubo, T., et al. (2006). LRRK2 in Parkinson’s disease and dementia with Lewy bodies. Molecular Neurodegeneration, 1, 17. doi:10.1186/1750-1326-1-17.

    PubMed Central  PubMed  Google Scholar 

Download references

Financial Disclosures

LG is supported by a Marie Curie intra-European Fellowship of the European Community’s Seventh Framework Programme under contract number PIEF-GA-2011-300355 and a Veni grant (ZonMW 916-14-016) from the Netherlands Organisation for Scientific Research. BF is supported by Gamla Tjänarinnor, Sigurd och Elsa Goljes minne, the Swedish Research Council, the Swedish Research Council for Health Working Life and Welfare as well as a donation from the af Jochnick Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotte Gerritsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferencz, B., Gerritsen, L. Genetics and Underlying Pathology of Dementia. Neuropsychol Rev 25, 113–124 (2015). https://doi.org/10.1007/s11065-014-9276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-014-9276-3

Keywords

Navigation