Skip to main content

Advertisement

Log in

The Role of the Cerebellum in Cognition and Emotion: Personal Reflections Since 1982 on the Dysmetria of Thought Hypothesis, and Its Historical Evolution from Theory to Therapy

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

The cognitive neuroscience of the cerebellum is now an established multidisciplinary field of investigation. This essay traces the historical evolution of this line of inquiry from an emerging field to its current status, with personal reflections over almost three decades on this journey of discovery. It pays tribute to early investigators who recognized the wider role of the cerebellum beyond motor control, traces the origins of new terms and concepts including the dysmetria of thought theory, the universal cerebellar transform, and the cerebellar cognitive affective syndrome, and places these developments within the broader context of the scientific efforts of a growing community of cerebellar cognitive neuroscientists. This account considers the converging evidence from theoretical, anatomical, physiological, clinical, and functional neuroimaging approaches that have resulted in the transition from recognizing the cerebellar incorporation into the distributed neural circuits subserving cognition and emotion, to a hopeful new era of treatment of neurocognitive and neuropsychiatric manifestations of cerebellar diseases, and to cerebellar-based interventions for psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbie, A. A. (1934). The projection of the forebrain on the pons and cerebellum. Proceedings of the Royal Society of London [Biol.] 115504–115522.

  • Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61.

    Article  Google Scholar 

  • Aleman, A., Sommer, I. E., & Kahn, R. S. (2007). Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: a meta-analysis. The Journal of Clinical Psychiatry, 68(3), 416–421.

    Article  PubMed  Google Scholar 

  • Allen, G. I., & Tsukahara, N. (1974). Cerebrocerebellar communication systems. Physiological Reviews, 54(4), 957–1006.

    CAS  PubMed  Google Scholar 

  • Andreasen, N. C., O’Leary, D. S., Cizadlo, T., Arndt, S., Rezai, K., Ponto, L. L., et al. (1996). Schizophrenia and cognitive dysmetria: a positron emission tomography study of dysfunctional prefrontal-thalamic-cerebelar circuitry. Proceedings of the National Academy of Sciences of the United States of America, 93, 9985–9990.

    Article  CAS  PubMed  Google Scholar 

  • Angevine, J. B., Mancall, E. L., & Yakovlev, P. I. (1961). The human cerebellum: An atlas of gross topography in serial sections. Boston: Little, Brown and Co.

    Google Scholar 

  • Baillieux, H., De Smet, H. J., Dobbeleir, A., Paquier, P. F., De Deyn, P. P., & Mariën, P. (2010). Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex, 46(7), 869–879.

    Article  PubMed  Google Scholar 

  • Ball, G., Micco, D. J., & Berntson, G. (1974). Cerebellar stimulation in the rat. Complex stimulation bound oral behaviors and self-stimulation. Physiology & Behavior, 13, 123–127.

    Article  CAS  Google Scholar 

  • Barlow, J. S. (2002). The cerebellum and adaptive control. New York: Cambridge University Press.

    Book  Google Scholar 

  • Bauman, M., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35(6), 866–874.

    CAS  PubMed  Google Scholar 

  • Berman, A. F., Berman, D., & Prescott, J. W. (1978). The effect of cerebellar lesions on emotional behavior in the rhesus monkey. In I. S. Cooper, M. Riklan, & R. S. Snider (Eds.), The cerebellum, epilepsy and behavior (pp. 277–284). New York: Plenum. Adapted and reprinted as Berman, A. J. (1997). Amelioration of aggression: Response to selective cerebellar lesions in the rhesus monkey. In J. D. Schmahmann (Ed.), The cerebellum and cognition. Int Rev Neurobiol, 41, 111–119. San Diego: Academic.

  • Berntson, G. G., Potolicchio, S. J., Jr., & Miller, N. E. (1973). Evidence for higher functions of the cerebellum: eating and grooming elicited by cerebellar stimulation in cats. Proceedings of the National Academy of Sciences of the United States of America, 70(9), 2497–2499.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, D. V. (2007). Curing dyslexia and attention-deficit hyperactivity disorder by training motor co-ordination: miracle or myth? Journal of Paediatrics and Child Health, 43(10), 653–655.

    Article  PubMed  Google Scholar 

  • Botez-Marquard, T., & Botez, M. I. (1993). Cognitive behavior in heredodegenerative ataxias. European Neurology, 33(5), 351–357.

    Article  CAS  PubMed  Google Scholar 

  • Botez, M. I., Gravel, J., Attig, E., & Vezina, J. L. (1985). Reversible chronic cerebellar ataxia after phenytoin intoxication: possible role of cerebellum in cognitive thought. Neurology, 35(8), 1152–1157.

    CAS  PubMed  Google Scholar 

  • Bower, J. M. (1995). The cerebellum as sensory acquisition controller. Human Brain Mapping, 2, 12–13.

    Google Scholar 

  • Brodal, P. (1978). The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain, 101(2), 251–283.

    Article  CAS  PubMed  Google Scholar 

  • Brodal, A. (1981). Neurological anatomy in relation to clinical medicine (3rd ed.). New York: Oxford University Press.

    Google Scholar 

  • Cannon, W. B. (1939). Law of denervation. American Journal of Medical Science 198(737–50).

    Google Scholar 

  • Caplan, L. R., Schmahmann, J. D., Kase, C. S., Feldmann, E., Baquis, G., Greenberg, J. P., et al. (1990). Caudate Infarcts. Archives of Neurology, 47, 133–143.

  • Catani, M., Jones, D. K., Daly, E., Embiricos, N., Deeley, Q., Pugliese, L., et al. (2008). Altered cerebellar feedback projections in Asperger syndrome. Neuroimage, 41(4), 1184–1191.

    Article  PubMed  Google Scholar 

  • Chambers, W. W., & Sprague, J. M. (1955a). Functional localization in the cerebellum. I. Organization in longitudinal cortico-nuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. The Journal of Comparative Neurology, 103(1), 105–129.

    Article  CAS  Google Scholar 

  • Chambers, W. W., & Sprague, J. M. (1955b). Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. A.M.A. Archives of Neurology & Psychiatry, 74(6), 653–680.

    CAS  Google Scholar 

  • Chheda, M., Sherman, J., & Schmahmann, J. D. (2002). Neurologic, psychiatric and cognitive manifestations in cerebellar agenesis. Neurology, 58(Suppl 3), 356.

    Google Scholar 

  • Clarke, E., & O’Malley, C. D. (1996). The human brain and spinal cord. A historical study illustrated by writings from antiquity to the twentieth century (2nd ed.). San Francisco: Norman.

    Google Scholar 

  • Clower, D. M., West, R. A., Lynch, J. C., & Strick, P. L. (2001). The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. The Journal of Neuroscience, 21(16), 6283–6291.

    CAS  PubMed  Google Scholar 

  • Combettes. (1831). Absence complète du cervelet, des pédoncules postérieurs et de la protubérance cérébrale chez une jeune fille morte dans sa onzième année. Bulletins de la Societe anatomique de Paris, 5, 148–157.

    Google Scholar 

  • Cooper, I. S., Amin, L., & Gilman, S. W. J. M. (1974). The effect of chronic stimulation of cerebellar cortex on epilepsy in man. In I. S. Cooper, M. Riklan, & R. S. Snider (Eds.), The cerebellum, epilepsy and behavior (pp. 119–172). New York: Plenum.

    Google Scholar 

  • Cooper, I. S., Riklan, M., Amin, I., & Cullinan, T. (1978). A long-term follow-up study of cerebellar stimulation for the control of epilepsy. In I. S. Cooper (Ed.), Cerebellar stimulation in man (pp. 19–38). New York: Raven.

    Google Scholar 

  • Courchesne, E., & Allen, G. (1997). Prediction and preparation, fundamental functions of the cerebellum. Learning & Memory, 4(1), 1–35.

    Article  CAS  Google Scholar 

  • Courchesne, E., Yeung-Courchesne, R., Press, G. A., Hesselink, J. R., & Jernigan, T. L. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. The New England Journal of Medicine, 318(21), 1349–1354.

    Article  CAS  PubMed  Google Scholar 

  • Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L., & Woolsey, T. A. (1972). The autoradiographic demonstration of axonal connections in the central nervous system. Brain Research, 37, 21–51.

    Article  CAS  PubMed  Google Scholar 

  • Dejerine, J. J. (1895). Anatomie des centres nerveux. Paris: Rueff et Cie.

    Google Scholar 

  • Demirtas-Tatlidede, A., Freitas, C., Cromer, J., Safar, L., Ongur, D., & Stone, W. S., et al. (2010). A proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophrenia Research, doi:10.1016/j.schres.2010.08.015

  • Denny-Brown, D. (1942). The sequelae of war head injuries. New England Journal of Medicine, 227, 771–789 and 813–821.

    Google Scholar 

  • Denny-Brown, D. (1962). The Basal Ganglia and their relation to disorders of movement. London: Oxford University Press.

    Google Scholar 

  • Denny-Brown, D. (1964). Department of neurology. In J. J. Byrne (Ed.), A history of the Boston City Hospital, 1905–1964 (pp. 110–122). Boston: Sheldon.

    Google Scholar 

  • Denny-Brown, D., & Banker, B. Q. (1954). Amorphosynthesis from left parietal lesion. AMA Archives of Neurology and Psychiatry, 71, 302–313.

    CAS  Google Scholar 

  • Denny-Brown, D., & Chambers, R. A. (1958). The parietal lobe and behavior. Research Publications - Association for Research in Nervous and Mental Disease, 36, 35–117.

    CAS  PubMed  Google Scholar 

  • Denny-Brown, D., Meyer, J. S., & Horenstein, S. (1952). The significance of perceptual rivalry resulting from parietal lesion. Brain, 75(4), 433–471.

    Article  CAS  PubMed  Google Scholar 

  • Desmond, J. E., & Fiez, J. A. (1998). Neuroimaging studies of the cerebellum: language, learning and memory. Trends in Cognitive Sciences, 2, 355–362.

    Article  Google Scholar 

  • Diedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. Neuroimage, 33(1), 127–138.

    Article  PubMed  Google Scholar 

  • Dietrichs, E., & Haines, D. E. (1984). Demonstration of hypothalamo-cerebellar and cerebello-hypothalamic fibres in a prosimian primate (Galago crassicaudatus). Anatomy and Embryology (Berlin), 170(3), 313–318.

    Article  CAS  Google Scholar 

  • Dimitrova, A., Zeljko, D., Schwarze, F., Maschke, M., Gerwig, M., Frings, M., et al. (2006). Probabilistic 3D MRI atlas of the human cerebellar dentate/interposed nuclei. Neuroimage, 30(1), 12–25.

    Article  CAS  PubMed  Google Scholar 

  • Dow, R. S. (1974). Some novel concepts of cerebellar physiology. The Mount Sinai Journal of Medicine, 41(1), 103–119.

    CAS  Google Scholar 

  • Dow, R. S., & Moruzzi, G. (1958). The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Doyon, J., Penhune, V., Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252–262.

    Article  PubMed  Google Scholar 

  • Dum, R. P., & Strick, P. L. (2003). An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. Journal of Neurophysiology, 89(1), 634–639.

    Article  PubMed  Google Scholar 

  • Duncan, G. W., Parker, S. W., & Fisher, C. M. (1975). Acute cerebellar infarction in the PICA territory. Archives of Neurology, 32(6), 364–368.

    CAS  PubMed  Google Scholar 

  • Evarts, E. V., & Thach, W. T. (1969). Motor mechanisms of the CNS: cerebrocerebellar interrelations. Annual Review of Physiology, 31, 451–498.

    Article  CAS  PubMed  Google Scholar 

  • Exner, C., Weniger, G., & Irle, E. (2004). Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology, 63(11), 2132–2135.

    PubMed  Google Scholar 

  • Fiez, J. A., & Raichle, M. E. (1997). Linguistic processing. In J. D. Schmahmann (Ed.), The cerebellum and cognition. Int Rev Neurobiol, 41, 233–254. San Diego: Academic.

    Google Scholar 

  • Flourens, P. (1824). Recherches experimentales sur les proprietes et les fonctions du systseme nerveux, dans les animaux vertebres. Paris: Crevot.

    Google Scholar 

  • Fox, P. T., Raichle, M. E., & Thach, W. T. (1985). Functional mapping of the human cerebellum with positron emission tomography. Proceedings of the National Academy of Sciences of the United States of America, 82(21), 7462–7466.

    Article  CAS  PubMed  Google Scholar 

  • Fregni, F., Marcolin, M. A., Myczkowski, M., Amiaz, R., Hasey, G., Rumi, D. O., et al. (2006). Predictors of antidepressant response in clinical trials of transcranial magnetic stimulation. The International Journal of Neuropsychopharmacology, 9(6), 641–654.

    Article  CAS  PubMed  Google Scholar 

  • Frick, R. B. (1982). The ego and the vestibulocerebellar system: some theoretical perspectives. The Psychoanalytic Quarterly, 51(1), 93–122.

    CAS  PubMed  Google Scholar 

  • Fries, W. (1990). Pontine projection from striate and prestriate visual cortex in the macaque monkey: an anterograde study. Visual Neuroscience, 4(3), 205–216.

    Article  CAS  PubMed  Google Scholar 

  • Gall, F. J., Vimont, J., & Broussais, J. V. (1838). On the functions of the cerebellum. English translation by George Combe. Edinburgh: Maclachlan & Stewart.

    Google Scholar 

  • Geschwind, N. (1965a). Disconnexion syndromes in animals and man. I. Brain, 88(2), 237–294.

    Article  CAS  PubMed  Google Scholar 

  • Geschwind, N. (1965b). Disconnexion syndromes in animals and man. II. Brain, 88(3), 585–644.

    Article  CAS  PubMed  Google Scholar 

  • Glickstein, M., May, J. G., 3rd, & Mercier, B. E. (1985). Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. The Journal of Comparative Neurology, 235(3), 343–359.

    Article  CAS  PubMed  Google Scholar 

  • Gomez Beldarrain, M., Garcia-Monco, J. C., Quintana, J. M., Llorens, V., & Rodeno, E. (1997). Diaschisis and neuropsychological performance after cerebellar stroke. European Neurology, 37(2), 82–89.

    Article  CAS  PubMed  Google Scholar 

  • Granziera, C., Schmahmann, J. D., Hadjikhani, N., Heiko, M., Meuli, R., Wedeen, V. J., et al. (2009). Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS ONE, 4(4), e5101. Epub 2009 Apr 2.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory, 70(1–2), 119–136.

    Article  CAS  PubMed  Google Scholar 

  • Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon, V., et al. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. The Journal of Neuroscience, 29(26), 8586–8594.

    Article  CAS  PubMed  Google Scholar 

  • Haines, D. E., & Rubertone, J. A. (1977). Cerebellar corticonuclear fibers: evidence of zones in the primate anterior lobe. Neuroscience Letters, 6(2–3), 231–236.

    Article  CAS  PubMed  Google Scholar 

  • Haines, D. E., & Dietrichs, E. (1984). An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (Saimiri sciureus). The Journal of Comparative Neurology, 229(4), 559–575.

    Article  CAS  PubMed  Google Scholar 

  • Harlow, H. F., & Harlow, M. (1962). Social deprivation in monkeys. Scientific American, 207, 136–146.

    Article  CAS  PubMed  Google Scholar 

  • Harper, J. W., & Heath, R. G. (1973). Anatomic connections of the fastigial nucleus to the rostral forebrain in the cat. Experimental Neurology, 39(2), 285–292.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann-von Monakow, K., Akert, K., & Kunzle, H. (1981). Projection of precentral, premotor and prefrontal cortex to the basilar pontine grey and to nucleus reticularis tegmenti pontis in the monkey (Macaca fascicularis). Schweizer Archiv für Neurologie, Neurochirurgie und Psychiatrie, 129(2), 189–208.

    CAS  PubMed  Google Scholar 

  • Heath, R. G. (1977). Modulation of emotion with a brain pacemaker. Treatment for intractable psychiatric illness. The Journal of Nervous and Mental Disease, 165(5), 300–317.

    Article  CAS  PubMed  Google Scholar 

  • Heath, R. G. (1997). Foreword. In J. D. Schmahmann (Ed.), The Cerebellum and Cognition. Int Rev Neurobiol, 41, xxiii–xxv. San Diego: Academic.

    Google Scholar 

  • Heath, R. G., & Harper, J. W. (1974). Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: evoked potential and histological studies in monkeys and cats. Experimental Neurology, 45(2), 268–287.

    Article  CAS  PubMed  Google Scholar 

  • Heath, R. G., Franklin, D. E., & Shraberg, D. (1979). Gross pathology of the cerebellum in patients diagnosed and treated as functional psychiatric disorders. The Journal of Nervous and Mental Disease, 167(10), 585–592.

    Article  CAS  PubMed  Google Scholar 

  • Heath, R. G., Llewellyn, R. C., & Rouchell, A. M. (1980). The cerebellar pacemaker for intractable behavioral disorders and epilepsy: follow-up report. Biological Psychiatry, 15(2), 243–256.

    CAS  PubMed  Google Scholar 

  • Heilman, K. M., Bowers, D., Valenstein, E., & Watson, R. T. (1986). The right hemisphere: neuropsychological functions. Journal of Neurosurgery, 64(5), 693–704.

    Article  CAS  PubMed  Google Scholar 

  • Heilman, K. M., & Van Den Abell, T. (1980). Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology, 30(3), 327–330.

    CAS  PubMed  Google Scholar 

  • Henneman, E., Cooke, P. M., & Snider, R. S. (1952). Cerebellar projections to the cerebral cortex. Research Publications—Association for Research in Nervous and Mental Disease, 30, 317–333.

    CAS  PubMed  Google Scholar 

  • Hornyak, M., Rovit, R. L., Simon, A. S., & Couldwell, W. T. (2001). Irving S. Cooper and the early surgical management of movement disorders. Video history. Neurosurgical Focus, 11(2), E6.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M. (1984). The cerebellum and neural control. New York: Raven.

    Google Scholar 

  • Ito, M. (1993). Movement and thought: identical control mechanisms by the cerebellum. Trends in Neurosciences, 16(11), 448–450. discussion 453–444.

    Article  CAS  PubMed  Google Scholar 

  • Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1, 136–152.

    Article  Google Scholar 

  • Jansen, J., & Brodal, A. (1940). Experimental studies on the intrinsic fibers of the cerebellum. II. The cortico-nuclear projection. The Journal of Comparative Neurology, 73, 267–321.

    Article  Google Scholar 

  • Joseph, A. B., Anderson, W. H., & O’Leary, D. H. (1985). Brainstem and vermis atrophy in catatonia. The American Journal of Psychiatry, 142(3), 352–354.

    CAS  PubMed  Google Scholar 

  • Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. The Journal of Neuroscience, 23(23), 8432–8444.

    CAS  PubMed  Google Scholar 

  • Kemper, T. L., & Bauman, M. (1998). Neuropathology of infantile autism. Journal of Neuropathology and Experimental Neurology, 57(7), 645–652.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. J., Mohamed, S., Andreasen, N. C., O’Leary, D. S., Watkins, G. L., Boles Ponto, L. L., et al. (2000). Regional neural dysfunctions in chronic schizophrenia studied with positron emission tomography. The American Journal of Psychiatry, 157(4), 542–548.

    Article  CAS  PubMed  Google Scholar 

  • Krienen, F. M., & Buckner, R. L. (2009). Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebral Cortex, 19(10), 2485–2497.

    Article  PubMed  Google Scholar 

  • Kuypers, H. G., & Ugolini, G. (1990). Viruses as transneuronal tracers. Trends in Neurosciences, 13(2), 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Laird, A. R., Fox, P. M., Price, C. J., Glahn, D. C., Uecker, A. M., Lancaster, J. L., et al. (2005). ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Human Brain Mapping, 25(1), 155–164.

    Article  PubMed  Google Scholar 

  • Lalonde, R., & Botez, M. I. (1986). Navigational deficits in weaver mutant mice. Brain Research, 398(1), 175–177.

    Article  CAS  PubMed  Google Scholar 

  • Larsell, O., & Jansen, J. (1972). The comparative anatomy and histology of the cerebellum. The human cerebellum, cerebellar connections, and cerebellar cortex. Minneapolis: The University of Minnesota Press.

    Google Scholar 

  • Leaton, R. N., & Supple, W. F., Jr. (1986). Cerebellar vermis: essential for long-term habituation of the acoustic startle response. Science, 232(4749), 513–515.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H., Sohn, S. I., Cho, Y. W., Lee, S. R., Ahn, B. H., Park, B. R., et al. (2006). Cerebellar infarction presenting isolated vertigo: frequency and vascular topographical patterns. Neurology, 67(7), 1178–1183.

    Article  CAS  PubMed  Google Scholar 

  • Leggio, M. G., Chiricozzi, F. R., Clausi, S., Tedesco, A. M., & Molinari, M. (2009). The neuropsychological profile of cerebellar damage: The sequencing hypothesis. Cortex, Sep 6. [Epub ahead of print]

  • Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100(4), 443–454.

    Article  CAS  PubMed  Google Scholar 

  • Levinson, H. N. (1988). The cerebellar-vestibular basis of learning disabilities in children, adolescents and adults: hypothesis and study. Perceptual and Motor Skills, 67(3), 983–1006.

    CAS  PubMed  Google Scholar 

  • Levisohn, L., Cronin-Golomb, A., & Schmahmann, J. D. (2000). Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain, 123(Pt 5), 1041–1050.

    Article  PubMed  Google Scholar 

  • Limperopoulos, C., Soul, J. S., Haidar, H., Huppi, P. S., Bassan, H., Warfield, S. K., et al. (2005). Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics, 116(4), 844–850.

    Article  PubMed  Google Scholar 

  • Limperopoulos, C., Bassan, H., Gauvreau, K., Robertson, R. L., Jr., Sullivan, N. R., Benson, C. B., et al. (2007). Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics, 120(3), 584–593.

    Article  PubMed  Google Scholar 

  • Locke, S. (1969). Modern neurology papers in tribute to Denny-Brown. Boston: Little Brown.

    Google Scholar 

  • Maeshima, S., & Osawa, A. (2007). Stroke rehabilitation in a patient with cerebellar cognitive affective syndrome. Brain Injury, 21(8), 877–883.

    Article  PubMed  Google Scholar 

  • Makris, N., Hodge, S. M., Haselgrove, C., Kennedy, D. N., Dale, A., Fischl, B., et al. (2003). Human cerebellum: surface-assisted cortical parcellation and volumetry with magnetic resonance imaging. Journal of Cognitive Neuroscience, 15(4), 584–599.

    Article  PubMed  Google Scholar 

  • Makris, N., Schlerf, J. E., Hodge, S. M., Haselgrove, C., Albaugh, M. D., Seidman, L. J., et al. (2005). MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability. Neuroimage, 25(4), 1146–1160.

    Article  PubMed  Google Scholar 

  • Marr, D. (1969). A theory of cerebellar cortex. Journal de Physiologie, 202(2), 437–470.

    CAS  Google Scholar 

  • Martner, J. (1975). Cerebellar influences on autonomic mechanisms. An experimental study in the cat with special reference to the fastigial nucleus. Acta Physiologica Scandinavica. Supplementum, 425, 1–42.

    CAS  PubMed  Google Scholar 

  • Mason, W. A., & Berkson, G. (1975). Effects of maternal mobility on the development of rocking and other behaviors in rhesus monkeys: a study with artificial mothers. Developmental Psychobiology, 8(3), 197–211.

    Article  CAS  PubMed  Google Scholar 

  • May, J. G., & Andersen, R. A. (1986). Different patterns of corticopontine projections from separate cortical fields within the inferior parietal lobule and dorsal prelunate gyrus of the macaque. Experimental Brain Research, 63(2), 265–278.

    Article  CAS  Google Scholar 

  • Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., et al. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45(5), 651–660.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10(4), 309–325.

    Article  CAS  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266(5184), 458–461.

    Article  CAS  PubMed  Google Scholar 

  • Molinari, M., Leggio, M. G., Solida, A., Ciorra, R., Misciagna, S., Silveri, M. C., et al. (1997). Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain, 120(Pt 10), 1753–1762.

    Article  PubMed  Google Scholar 

  • Molinari, M., Petrosini, L., Misciagna, S., & Leggio, M. G. (2004). Visuospatial abilities in cerebellar disorders. Journal of Neurology, Neurosurgery and Psychiatry, 75(2), 235–240.

    CAS  Google Scholar 

  • Nadeau, S. E., & Crosson, B. (1997). Subcortical aphasia. Brain and Language, 58(3), 355–402. discussion 418–423.

    Article  CAS  PubMed  Google Scholar 

  • Neau, J. P., Arroyo-Anllo, E., Bonnaud, V., Ingrand, P., & Gil, R. (2000). Neuropsychological disturbances in cerebellar infarcts. Acta Neurologica Scandinavica, 102(6), 363–370.

    Article  CAS  PubMed  Google Scholar 

  • Neuburger, M. (1897/1981). Die historiche Entwicklung der experimentellen Gehirn-und Ruckenmarksphysiologie vor Flourens. Translated and edited, with additional material, by Edwin Clarke, as The Historical Development of Experimental Brain and Spinal Cord Physiology Before Flourens. Baltimore/London: Johns Hopkins University Press.

  • Nicolson, R. I., & Fawcett, A. J. (2005). Developmental dyslexia, learning and the cerebellum. Journal of Neural Transmission. Supplementum (69), 19–36.

  • Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: the cerebellar deficit hypothesis. Trends in Neurosciences, 24(9), 508–511.

    Article  CAS  PubMed  Google Scholar 

  • Nopoulos, P. C., Ceilley, J. W., Gailis, E. A., & Andreasen, N. C. (1999). MRI volumetry of the vermis and the cerebellar hemispheres in men with schizophrenia. Biological Psychiatry, 46, 703–711.

    Article  CAS  PubMed  Google Scholar 

  • Nyby, O., & Jansen, J. (1951). An experimental investigation of the corticopontine projection in macaca mulatta. Skrifter utgitt av det Norske Vedenskapsakademie Oslo. Mat Naturv Klasse, 3, 1–47.

    Google Scholar 

  • O’Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20(4), 953–965.

    Article  PubMed  Google Scholar 

  • Oscarsson, O. (1965). Functional organization of the spino- and cuneocerebellar tracts. Physiological Reviews, 45, 495–522.

    CAS  PubMed  Google Scholar 

  • Parvizi, J., Joseph, J. T., Press, D., & Schmahmann, J. D. (2007). Pathological laughter and crying in patients with multiple system atrophy-cerebellar type. Movement Disorders, 22, 798–803.

    Article  PubMed  Google Scholar 

  • Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(6157), 585–589.

    Article  CAS  PubMed  Google Scholar 

  • Petrides, M., & Pandya, D. N. (1988). Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. The Journal of Comparative Neurology, 273(1), 52–66.

    Article  CAS  PubMed  Google Scholar 

  • Petrosini, L., Molinari, M., & Dell’Anna, M. E. (1996). Cerebellar contribution to spatial event processing: Morris water maze and T-maze. The European Journal of Neuroscience, 8(9), 1882–1896.

    Article  CAS  PubMed  Google Scholar 

  • Pollack, I. F., Polinko, P., Albright, A. L., Towbin, R., & Fitz, C. (1995). Mutism and pseudobulbar symptoms after resection of posterior fossa tumors in children: incidence and pathophysiology. Neurosurgery, 37(5), 885–893.

    Article  CAS  PubMed  Google Scholar 

  • Prescott, J. W. (1971). Early somatosensory deprivation as ontogenic process in the abnormal development of the brain and behavior. In Moor-Jankowski EIGaJ (Ed.), Medical primatology 1970. Basel: Karger.

    Google Scholar 

  • Rapoport, M., van Reekum, R., & Mayberg, H. (2000). The role of the cerebellum in cognition and behavior: a selective review. The Journal of Neuropsychiatry and Clinical Neurosciences, 12(2), 193–198.

    CAS  PubMed  Google Scholar 

  • Rauch, S. L., Dougherty, D. D., Malone, D., Rezai, A., Friehs, G., Fischman, A. J., et al. (2006). A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. Journal of Neurosurgery, 104(4), 558–565.

    Article  PubMed  Google Scholar 

  • Reynolds, D., & Nicolson, R. I. (2007). Follow-up of an exercise-based treatment for children with reading difficulties. Dyslexia, 13(2), 78–96.

    Article  PubMed  Google Scholar 

  • Reynolds, D., Nicolson, R. I., & Hambly, H. (2003). Evaluation of an exercise-based treatment for children with reading difficulties. Dyslexia, 9(1), 48–71. discussion 46–47.

    Article  PubMed  Google Scholar 

  • Richter, S., Aslan, B., Gerwig, M., Wilhelm, H., Kramer, S., Todica, O., et al. (2007). Patients with chronic focal cerebellar lesions show no cognitive abnormalities in a bedside test. Neurocase, 13(1), 25–36.

    Article  PubMed  Google Scholar 

  • Riva, D., & Giorgi, C. (2000). The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain, 123(Pt 5), 1051–1061.

    Article  PubMed  Google Scholar 

  • Sadeh, M., & Cohen, I. (2001). Transient loss of speech after removal of posterior fossa tumors—one aspect of a larger neuropsychological entity: the cerebellar cognitive affective syndrome. Pediatric Hematology and Oncology, 18(7), 423–426.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, K., Oka, H., Matsuda, Y., Shimono, T., & Mizuno, N. (1975). Electrophysiological studies of the projections from the parietal association area to the cerebellar cortex. Experimental Brain Research, 23, 91–102.

    Article  CAS  Google Scholar 

  • Schmahmann, J. (1991). An emerging concept. The cerebellar contribution to higher function. Archives of Neurology, 48(11), 1178–1187.

    CAS  PubMed  Google Scholar 

  • Schmahmann, J. D. (1994). The cerebellum in autism: Clinical and anatomic perspectives. In M. L. Bauman & T. L. Kemper (Eds.), The neurobiology of autism (pp. 195–226). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Schmahmann, J. D. (1996). From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Human Brain Mapping, 4, 174–198.

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann, J. D. (1997a). The cerebellum and cognition. Int Rev Neurobiol, vol 41. San Diego: Academic.

    Google Scholar 

  • Schmahmann, J. D. (1997b). Therapeutic and research implications. In J. D. Schmahmann (Ed.), The cerebellum and cognition. Int Rev Neurobiol, 41, 637–647. San Diego: Academic.

    Google Scholar 

  • Schmahmann, J. D. (1998). Dysmetria of thought. Clinical consequences of cerebellar dysfunction on cognition and affect. Trends in Cognitive Sciences, 2, 362–370.

    Article  Google Scholar 

  • Schmahmann, J. D. (2000). The role of the cerebellum in affect and psychosis. Journal of Neurolinguistics, 13, 189–214.

    Article  Google Scholar 

  • Schmahmann, J. D. (2001). The cerebellar cognitive affective syndrome: clinical correlations of the dysmetria of thought hypothesis. International Review of Psychiatry, 13, 313–322.

    Article  Google Scholar 

  • Schmahmann, J. D. (2004). Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 16(3), 367–378.

    PubMed  Google Scholar 

  • Schmahmann, J. D., Doyon, J., McDonald, D., Holmes, C., Lavoie, K., Hurwitz, A. S., et al. (1999). Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage, 10(3 Pt 1), 233–260.

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann, J. D., Doyon, J., Toga, A., Evans, A., & Petrides, M. (2000). MRI atlas of the human cerebellum. San Diego: Academic.

    Google Scholar 

  • Schmahmann, J. D., Gardner, R. C., MacMore, J., & Vangel, M. (2009b). Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS. Movement Disorders, 24, 1820–1828.

    Article  Google Scholar 

  • Schmahmann, J. D., Hurwitz, A. S., Loeber, R. T., & Marjani, J. L. (1998a). A semi-flattened map of the human cerebellum. A new approach to visualizing the cerebellar cortex in 2-dimensional space. Society for Neuroscience Abstracts, 24, 1409.

    Google Scholar 

  • Schmahmann, J. D., Loeber, R. T., Marjani, J., & Hurwitz, A. S. (1998b). Topographic organization of cognitive functions in the human cerebellum. A meta-analysis of functional imaging studies. Neuroimage, 7, S721.

    Google Scholar 

  • Schmahmann, J. D., MacMore, J., & Vangel, M. (2009a). Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience, 162(3), 852–861.

    Article  CAS  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1987). Posterior parietal projections to the basis pontis in rhesus monkey. Possible anatomical substrate for the cerebellar modulation of complex behavior. Neurology, 37, 297.

    Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1989). Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. The Journal of Comparative Neurology, 289(1), 53–73.

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1990). Anatomical investigation of projections from thalamus to posterior parietal cortex in the rhesus monkey: a WGA-HRP and fluorescent tracer study. The Journal of Comparative Neurology, 295(2), 299–326.

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1991). Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. The Journal of Comparative Neurology, 308(2), 224–248.

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1992). Course of the fiber pathways to pons from parasensory association areas in the rhesus monkey. The Journal of Comparative Neurology, 326(2), 159–179.

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1993). Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. The Journal of Comparative Neurology, 337(1), 94–112.

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1995). Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neuroscience Letters, 199(3), 175–178.

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1997a). Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. The Journal of Neuroscience, 17(1), 438–458.

    CAS  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1997b). The cerebrocerebellar system. In J. D. Schmahmann (Ed.), The cerebellum and cognition. Int Rev Neurobiol, 41, 31–60. San Diego: Academic.

    Google Scholar 

  • Schmahmann, J. D., & Pandya, D. (2006). Fiber pathways of the brain. New York: Oxford University Press.

    Book  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (2008). Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex, 44(8), 1037–1066.

    Article  PubMed  Google Scholar 

  • Schmahmann, J. D., & Sherman, J. C. (1997). Cerebellar cognitive affective syndrome. In J. D. Schmahmann (Ed.), The Cerebellum and Cognition. Int Rev Neurobiol, 41, 433–440. San Diego: Academic.

    Google Scholar 

  • Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(Pt 4), 561–579.

    Article  PubMed  Google Scholar 

  • Schmahmann, J. D., Rosene, D. L., & Pandya, D. N. (2004). Motor projections to the basis pontis in rhesus monkey. The Journal of Comparative Neurology, 478(3), 248–268.

    Article  PubMed  Google Scholar 

  • Schmahmann, J. D., Weilburg, J. B., & Sherman, J. C. (2007). The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum, 6(3), 254–267.

    Article  PubMed  Google Scholar 

  • Schweizer, T. A., Levine, B., Rewilak, D., O’Connor, C., Turner, G., Alexander, M. P., et al. (2008). Rehabilitation of executive functioning after focal damage to the cerebellum. Neurorehabilitation and Neural Repair, 22(1), 72–77.

    Article  PubMed  Google Scholar 

  • Seltzer, B., & Pandya, D. N. (1984). Further observations on parieto-temporal connections in the rhesus monkey. Experimental Brain Research, 55, 301–312.

    Article  CAS  Google Scholar 

  • Snider, R. S. (1950). Recent contributions to the anatomy and physiology of the cerebellum. Archives of Neurology and Psychiatry, 64(2), 196–219.

    CAS  PubMed  Google Scholar 

  • Snider, R. S. (1952). Interrelations of cerebellum and brainstem. Research Publications—Association for Research in Nervous and Mental Disease, 30, 267–281.

    CAS  PubMed  Google Scholar 

  • Snider, R. S., & Eldred, E. (1948). Cerebral projections to the tactile, auditory and visual areas of the cerebellum. The Anatomical Record, 100, 714.

    Google Scholar 

  • Snider, R. S., & Maiti, A. (1976). Cerebellar contributions to the Papez circuit. Journal of Neuroscience Research, 2(2), 133–146.

    Article  CAS  PubMed  Google Scholar 

  • Snider, R. S., & Stowell, A. (1944). Receiving areas of the tactile, auditory, and visual systems in the cerebellum. Journal of Neurophysiology, 7, 331–357.

    Google Scholar 

  • Snider, S. R. (1982). Cerebellar pathology in schizophrenia—cause or consequence? Neuroscience and Biobehavioral Reviews, 6(1), 47–53.

    Article  CAS  PubMed  Google Scholar 

  • Snowling, M. J., & Hulme, C. (2003). A critique of claims from Reynolds, Nicolson & Hambly (2003) that DDAT is an effective treatment for children with reading difficulties—‘lies, damned lies and (inappropriate) statistics’? Dyslexia, 9(2), 127–133. discussion 134–125.

    Article  PubMed  Google Scholar 

  • Steinlin, M., Imfeld, S., Zulauf, P., Boltshauser, E., Lovblad, K. O., Ridolfi Luthy, A., et al. (2003). Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain, 126(Pt 9), 1998–2008.

    Article  PubMed  Google Scholar 

  • Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage, 44(2), 489–501.

    Article  PubMed  Google Scholar 

  • Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46(7), 831–844.

    Article  PubMed  Google Scholar 

  • Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2010a). An fMRI case study of functional topography in the human cerebellum. Behavioural Neurology, 23(1), 65–79.

    Google Scholar 

  • Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2010b). Functional topography in the cerebellum for motor and cognitive tasks: An fMRI study. Society for Neuroscience, 2010. Online.

  • Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413–434.

    Article  CAS  PubMed  Google Scholar 

  • Sugihara, I., & Shinoda, Y. (2004). Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. The Journal of Neuroscience, 24(40), 8771–8785.

    Article  CAS  PubMed  Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: An approach to cerebral imaging (Translated by Mark Rayport.). New York: Thieme.

    Google Scholar 

  • Tavano, A., Grasso, R., Gagliardi, C., Triulzi, F., Bresolin, N., Fabbro, F., et al. (2007). Disorders of cognitive and affective development in cerebellar malformations. Brain, 130(Pt 10), 2646–2660.

    Article  PubMed  Google Scholar 

  • Thach, W. T. (1987). Cerebellar inputs to motor cortex. Ciba Foundation Symposium, 132, 201–220.

    CAS  PubMed  Google Scholar 

  • Thompson, R. F. (1983). Neuronal substrate of simple associative learning. Classical conditioning. Trends in Neurosciences, 6, 270–275.

    Article  Google Scholar 

  • Timmann, D., Brandauer, B., Hermsdorfer, J., Ilg, W., Konczak, J., Gerwig, M., et al. (2008). Lesion-symptom mapping of the human cerebellum. Cerebellum, 7(4), 602–606.

    Article  CAS  PubMed  Google Scholar 

  • Timmann, D., Drepper, J., Frings, M., Maschke, M., Richter, S., Gerwig, M., et al. (2010). The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex, 46(7), 845–857.

    Article  CAS  PubMed  Google Scholar 

  • Trouillas, P., Takayanagi, T., Hallett, M., Currier, R. D., Subramony, S. H., Wessel, K., et al. (1997). International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. Journal of the Neurological Sciences, 145(2), 205–211.

    Article  CAS  PubMed  Google Scholar 

  • Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage, 16, 765–780.

    Article  PubMed  Google Scholar 

  • Valenstein, E., Heilman, K. M., Watson, R. T., & Van Den Abell, T. (1982). Nonsensory neglect from parietotemporal lesions in monkeys. Neurology, 32(10), 1198–1201.

    CAS  PubMed  Google Scholar 

  • Vilensky, J., & van Hoesen, G. V. (1981). Corticopontine projections from the cingulate cortex in the rhesus monkey. Brain Research, 205, 391–395.

    Article  CAS  PubMed  Google Scholar 

  • Voogd, J. (2004). Cerebellum and precerebellar nuclei. In G. Paxinos & J. Mai (Eds.), The human nervous system (pp. 321–392). San Diego: Academic.

    Chapter  Google Scholar 

  • Voogd, J., & Glickstein, M. (1998). The anatomy of the cerebellum. Trends in Neurosciences, 21(9), 370–375.

    Article  CAS  PubMed  Google Scholar 

  • Watson, P. J. (1978). Nonmotor functions of the cerebellum. Psychological Bulletin, 85(5), 944–967.

    Article  CAS  PubMed  Google Scholar 

  • Watson, R. T., Valenstein, E., & Heilman, K. M. (1981). Thalamic neglect. Possible role of the medial thalamus and nucleus reticularis in behavior. Archives of Neurology, 38(8), 501–506.

    CAS  PubMed  Google Scholar 

  • Weinberger, D. R., Kleinman, J. E., Luchins, D. J., Bigelow, L. B., & Wyatt, R. J. (1980). Cerebellar pathology in schizophrenia: a controlled postmortem study. The American Journal of Psychiatry, 137(3), 359–361.

    CAS  PubMed  Google Scholar 

  • Whitney, E. R., Kemper, T. L., Rosene, D. L., Bauman, M. L., & Blatt, G. J. (2009). Density of cerebellar basket and stellate cells in autism: evidence for a late developmental loss of Purkinje cells. Journal of Neuroscience Research, 87(10), 2245–2254.

    Article  CAS  PubMed  Google Scholar 

  • Wiesendanger, R., Wiesendanger, M., & Ruegg, D. G. (1979). An anatomical investigation of the corticopontaine projection in the primate (Macaca fascicularis and Saimiri sciureus)-II. The projection from frontal and parental association areas. Neuroscience, 4(6), 747–765.

    Article  CAS  PubMed  Google Scholar 

  • Wisoff, J. H., & Epstein, F. J. (1984). Pseudobulbar palsy after posterior fossa operation in children. Neurosurgery, 15(5), 707–709.

    Article  CAS  PubMed  Google Scholar 

  • Wolf, J. K. (1971). The classical brainstem syndromes. Springfield: Charles C. Thomas.

    Google Scholar 

  • Woolsey, C. N. (1952). Summary of the papers on the cerebellum. Research Publications—Association for Research in Nervous and Mental Disease, 30, 334–336.

    Google Scholar 

  • Yeterian, E. H., & Van Hoesen, G. W. (1978). Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Research, 139(1), 43–63.

    Article  CAS  PubMed  Google Scholar 

  • Zanchetti, A., & Zoccolini, A. (1954). Autonomic hypothalamic outbursts elicited by cerebellar stimulation. Journal of Neurophysiology, 17(5), 475–483.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by NIH R01 MH067980, the Sidney R. Baer Jr Foundation, the MINDlink Foundation, the Birmingham Foundation, and the Massachusetts General Hospital Executive Committee on Research. The assistance of Jinny Sagorin, Jason MacMore and Laura Horton is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy D. Schmahmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmahmann, J.D. The Role of the Cerebellum in Cognition and Emotion: Personal Reflections Since 1982 on the Dysmetria of Thought Hypothesis, and Its Historical Evolution from Theory to Therapy. Neuropsychol Rev 20, 236–260 (2010). https://doi.org/10.1007/s11065-010-9142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-010-9142-x

Keywords

Navigation