Skip to main content

Advertisement

Log in

Connexin Hemichannels in Astrocytes: An Assessment of Controversies Regarding Their Functional Characteristics

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a ‘docked’ counterpart on the neighboring cell. A variety of stimuli are reported to open the hemichannels and thereby create a permeation pathway through the plasma membrane. Cx30 and Cx43 have, in their hemichannel configuration, been proposed to act as ion channels and membrane pathways for different molecules, such as fluorescent dyes, ATP, prostaglandins, and glutamate. Published studies about astrocyte hemichannel behavior, however, have been highly variable and/or contradictory. The field of connexin hemichannel research has been complicated by great variability in the experimental preparations employed, a lack of highly specific pharmacological inhibitors and by confounding changes associated with genetically modified animal models. This review attempts to critically assess the gating, inhibition and permeability of astrocytic connexin hemichannels and proposes that connexins in their hemichannel configuration act as gated pores with isoform-specific permeant selectivity. We expect that some, or all, of the controversies discussed here will be resolved by future research and sincerely hope that this review serves to motivate such clarifying investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 94:120–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harris AL, Locke D (2009) Permeability of connexin channels. In: Harris, AL, Locke, D (eds), Connexins a guide, Humana Press, New York, pp 165–206

    Chapter  Google Scholar 

  3. Nielsen MS, Nygaard AL, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou NH (2012) Gap junctions. Compr Physiol 2:1981–2035

    PubMed  Google Scholar 

  4. Sohl G, Willecke K (2003) An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes. 10:173–180

    Article  PubMed  Google Scholar 

  5. Ek-Vitorin JF, King TJ, Heyman NS, Lampe PD, Burt JM (2006) Selectivity of connexin 43 channels is regulated through protein kinase C-dependent phosphorylation. Circ Res 98:1498–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kwak BR, van Veen TA, Analbers LJ, Jongsma HJ (1995) TPA increases conductance but decreases permeability in neonatal rat cardiomyocyte gap junction channels. Exp Cell Res 220:456–463

    Article  CAS  PubMed  Google Scholar 

  7. Hofer A, Dermietzel R (1998) Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 24:141–154

    Article  CAS  PubMed  Google Scholar 

  8. Dermietzel R, Hertberg EL, Kessler JA, Spray DC (1991) Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci 11:1421–1432

    CAS  PubMed  Google Scholar 

  9. Gosejacob D, Dublin P, Bedner P, Huttmann K, Zhang J, Tress O, Willecke K, Pfrieger F, Steinhauser C, Theis M (2011) Role of astroglial connexin30 in hippocampal gap junction coupling. Glia 59:511–519

    Article  PubMed  Google Scholar 

  10. Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26:5438–5447

    Article  CAS  PubMed  Google Scholar 

  11. Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806

    CAS  PubMed  Google Scholar 

  12. Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    CAS  PubMed  Google Scholar 

  13. Contreras JE, Sanchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Saez JC (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA 99:495–500

    Article  CAS  PubMed  Google Scholar 

  14. Hansen DB, Ye ZC, Calloe K, Braunstein TH, Hofgaard JP, Ransom BR, Nielsen MS, MacAulay N (2014) Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi)channels. J Biol Chem 289:26058–26073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morita M, Saruta C, Kozuka N, Okubo Y, Itakura M, Takahashi M, Kudo Y (2007) Dual regulation of astrocyte gap junction hemichannels by growth factors and a pro-inflammatory cytokine via the mitogen-activated protein kinase cascade. Glia 55:508–515

    Article  PubMed  Google Scholar 

  16. Orellana JA, Diaz E, Schalper KA, Vargas AA, Bennett MV, Saez JC (2011) Cation permeation through connexin 43 hemichannels is cooperative, competitive and saturable with parameters depending on the permeant species. Biochem Biophys Res Commun 409:603–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yi C, Mei X, Ezan P, Mato S, Matias I, Giaume C, Koulakoff A (2016) Astroglial connexin43 contributes to neuronal suffering in a mouse model of Alzheimer’s disease. Cell Death Differ 23:1691–1701

    Article  CAS  PubMed  Google Scholar 

  18. Abudara V, Roux L, Dallerac G, Matias I, Dulong J, Mothet JP, Rouach N, Giaume C (2015) Activated microglia impairs neuroglial interaction by opening Cx43 hemichannels in hippocampal astrocytes. Glia 63:795–811

    Article  PubMed  Google Scholar 

  19. Gajardo-Gomez R, Labra VC, Maturana CJ, Shoji KF, Santibanez CA, Saez JC, Giaume C, Orellana JA (2017) Cannabinoids prevent the amyloid beta-induced activation of astroglial hemichannels: a neuroprotective mechanism. Glia 65:122–137

    Article  PubMed  Google Scholar 

  20. Garre JM, Retamal MA, Cassina P, Barbeito L, Bukauskas FF, Saez JC, Bennett MV, Abudara V (2010) FGF-1 induces ATP release from spinal astrocytes in culture and opens pannexin and connexin hemichannels. Proc Natl Acad Sci USA 107:22659–22664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Orellana JA, Shoji KF, Abudara V, Ezan P, Amigou E, Saez PJ, Jiang JX, Naus CC, Saez JC, Giaume C (2011) Amyloid beta-induced death in neurons involves glial and neuronal hemichannels. J Neurosci 31:4962–4977

    Article  CAS  PubMed  Google Scholar 

  22. Retamal MA, Cortes CJ, Reuss L, Bennett MV, Saez JC (2006) S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci USA 103:4475–4480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mei X, Ezan P, Giaume C, Koulakoff A (2010) Astroglial connexin immunoreactivity is specifically altered at beta-amyloid plaques in beta-amyloid precursor protein/presenilin1 mice. Neuroscience 171:92–105

    Article  CAS  PubMed  Google Scholar 

  24. Nagy JI, Li W, Hertzberg EL, Marotta CA (1996) Elevated connexin43 immunoreactivity at sites of amyloid plaques in Alzheimer’s disease. Brain Res 717:173–178

    Article  CAS  PubMed  Google Scholar 

  25. Bukanova JV, Sharonova IN, Skrebitsky VG (2014) Amyloid beta peptide (25–35) in picomolar concentrations modulates the function of glycine receptors in rat hippocampal pyramidal neurons through interaction with extracellular site(s). Brain Res 1558:1–10

    Article  CAS  PubMed  Google Scholar 

  26. Cirrito JR, May PC, O’Dell MA, Taylor JW, Parsadanian M, Cramer JW, Audia JE, Nissen JS, Bales KR, Paul SM, DeMattos RB, Holtzman DM (2003) In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. J Neurosci 23:8844–8853

    CAS  PubMed  Google Scholar 

  27. Giaume C, Theis M (2010) Pharmacological and genetic approaches to study connexin-mediated channels in glial cells of the central nervous system. Brain Res Rev 63:160–176

    Article  CAS  PubMed  Google Scholar 

  28. Giaume C, Leybaert L, Naus CC, Saez JC (2013) Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol 4:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Spray DC, Ye ZC, Ransom BR (2006) Functional connexin “hemichannels”: a critical appraisal. Glia 54:758–773

    Article  PubMed  Google Scholar 

  30. Aylsworth CF, Trosko JE, Welsch CW (1986) Influence of lipids on gap-junction-mediated intercellular communication between Chinese hamster cells in vitro. Cancer Res 46:4527–4533

    CAS  PubMed  Google Scholar 

  31. Burt JM, Spray DC (1989) Volatile anesthetics block intercellular communication between neonatal rat myocardial cells. Circ Res 65:829–837

    Article  CAS  PubMed  Google Scholar 

  32. Burt JM (1989) Uncoupling of cardiac cells by doxyl stearic acids specificity and mechanism of action. Am J Physiol 256:C913–C924

    CAS  PubMed  Google Scholar 

  33. Davidson JS, Baumgarten IM, Harley EH (1986) Reversible inhibition of intercellular junctional communication by glycyrrhetinic acid. Biochem Biophys Res Commun 134:29–36

    Article  CAS  PubMed  Google Scholar 

  34. Davidson JS, Baumgarten IM (1988) Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships. J Pharmacol Exp Ther 246:1104–1107

    CAS  PubMed  Google Scholar 

  35. Dhein S (1998) Gap junction channels in the cardiovascular system: pharmacological and physiological modulation. Trends Pharmacol Sci 19:229–241

    Article  CAS  PubMed  Google Scholar 

  36. Guan X, Cravatt BF, Ehring GR, Hall JE, Boger DL, Lerner RA, Gilula NB (1997) The sleep-inducing lipid oleamide deconvolutes gap junction communication and calcium wave transmission in glial cells. J Cell Biol 139:1785–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harks EG, de Roos AD, Peters PH, de Haan LH, Brouwer A, Ypey DL, van Zoelen EJ, Theuvenet AP (2001) Fenamates: a novel class of reversible gap junction blockers. J Pharmacol Exp Ther 298:1033–1041

    CAS  PubMed  Google Scholar 

  38. Srinivas M, Spray DC (2003) Closure of gap junction channels by arylaminobenzoates. Mol Pharmacol 63:1389–1397

    Article  CAS  PubMed  Google Scholar 

  39. Juszczak GR, Swiergiel AH (2009) Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. Prog Neuropsychopharmacol Biol Psychiatr 33:181–198

    Article  CAS  Google Scholar 

  40. Patel D, Zhang X, Veenstra RD (2014) Connexin hemichannel and pannexin channel electrophysiology: How do they differ? FEBS Lett 588:1372–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ye ZC, Oberheim N, Kettenmann H, Ransom BR (2009) Pharmacological “cross-inhibition” of connexin hemichannels and swelling activated anion channels. Glia 57:258–269

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M (2008) Connexin 43 hemichannels are permeable to ATP. J Neurosci 28:4702–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brokamp C, Todd J, Montemagno C, Wendell D (2012) Electrophysiology of single and aggregate Cx43 hemichannels. PLoS ONE 7:e47775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Benfenati V, Caprini M, Nicchia GP, Rossi A, Dovizio M, Cervetto C, Nobile M, Ferroni S (2009) Carbenoxolone inhibits volume-regulated anion conductance in cultured rat cortical astroglia. Channels 3:323–336

    Article  CAS  PubMed  Google Scholar 

  45. Bruzzone R, Barbe MT, Jakob NJ, Monyer H (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043

    Article  CAS  PubMed  Google Scholar 

  46. Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2007) The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci USA 104:6436–6441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qiu F, Dahl G (2009) A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP. Am J Physiol Cell Physiol 296:C250–C255

    Article  CAS  PubMed  Google Scholar 

  48. Braet K, Vandamme W, Martin PE, Evans WH, Leybaert L (2003) Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 33:37–48

    Article  CAS  PubMed  Google Scholar 

  49. Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    Article  CAS  PubMed  Google Scholar 

  50. Guinamard R, Simard C, Del NC (2013) Flufenamic acid as an ion channel modulator. Pharmacol Ther 138:272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eskandari S, Zampighi GA, Leung DW, Wright EM, Loo DD (2002) Inhibition of gap junction hemichannels by chloride channel blockers. J Membr Biol 185:93–102

    Article  CAS  PubMed  Google Scholar 

  52. Hansen DB, Braunstein TH, Nielsen MS, MacAulay N (2014) Distinct permeation profiles of the connexin 30 and 43 hemichannels. FEBS Lett 588:1446–1457

    Article  CAS  PubMed  Google Scholar 

  53. Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, Kessaris N, Richardson W, Rickheit G, Filippov MA, Monyer H, Mammano F (2008) ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci USA 105:18770–18775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bouron A, Kiselyov K, Oberwinkler J (2015) Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflugers Arch 467:1143–1164

    Article  CAS  PubMed  Google Scholar 

  55. Liu HT, Toychiev AH, Takahashi N, Sabirov RZ, Okada Y (2008) Maxi-anion channel as a candidate pathway for osmosensitive ATP release from mouse astrocytes in primary culture. Cell Res 18:558–565

    Article  CAS  PubMed  Google Scholar 

  56. Mlinar B, Enyeart JJ (1993) Block of current through T-type calcium channels by trivalent metal cations and nickel in neural rat and human cells. J Physiol 469:639–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang XC, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071

    Article  CAS  PubMed  Google Scholar 

  58. Dahl G, Nonner W, Werner R (1994) Attempts to define functional domains of gap junction proteins with synthetic peptides. Biophys J 67:1816–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Warner A, Clements DK, Parikh S, Evans WH, DeHaan RL (1995) Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes. J Physiol 488(Pt 3):721–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boitano S, Evans WH (2000) Connexin mimetic peptides reversibly inhibit Ca(2+) signaling through gap junctions in airway cells. Am J Physiol Lung Cell Mol Physiol 279:L623–L630

    CAS  PubMed  Google Scholar 

  61. Isakson BE, Evans WH, Boitano S (2001) Intercellular Ca2+ signaling in alveolar epithelial cells through gap junctions and by extracellular ATP. Am J Physiol Lung Cell Mol Physiol 280:L221–L228

    CAS  PubMed  Google Scholar 

  62. Desplantez T, Verma V, Leybaert L, Evans WH, Weingart R (2012) Gap26, a connexin mimetic peptide, inhibits currents carried by connexin43 hemichannels and gap junction channels. Pharmacol Res 65:546–552

    Article  CAS  PubMed  Google Scholar 

  63. Evans WH, Bultynck G, Leybaert L (2012) Manipulating connexin communication channels: use of peptidomimetics and the translational outputs. J Membr Biol 245:437–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang N, De BM, Antoons G, Gadicherla AK, Bol M, Decrock E, Evans WH, Sipido KR, Bukauskas FF, Leybaert L (2012) Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation. Basic Res Cardiol 107:304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wang J, Ma M, Locovei S, Keane RW, Dahl G (2007) Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol 293:C1112–C1119

    Article  CAS  PubMed  Google Scholar 

  66. Riquelme MA, Kar R, Gu S, Jiang JX (2013) Antibodies targeting extracellular domain of connexins for studies of hemichannels. Neuropharmacology 75:525–532

    Article  CAS  PubMed  Google Scholar 

  67. Ponsaerts R, De VE, Retamal M, D’hondt C, Vermeire D, Wang N, De SH, Zimmermann P, Himpens B, Vereecke J, Leybaert L, Bultynck G (2010) Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity. FASEB J 24:4378–4395

    Article  CAS  PubMed  Google Scholar 

  68. Wang N, De VE, Ponsaerts R, Boengler K, Palacios-Prado N, Wauman J, Lai CP, De BM, Decrock E, Bol M, Vinken M, Rogiers V, Tavernier J, Evans WH, Naus CC, Bukauskas FF, Sipido KR, Heusch G, Schulz R, Bultynck G, Leybaert L (2013) Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res Cardiol 108:309

    Article  PubMed  CAS  Google Scholar 

  69. Abudara V, Bechberger J, Freitas-Andrade M, De BM, Wang N, Bultynck G, Naus CC, Leybaert L, Giaume C (2014) The connexin43 mimetic peptide Gap19 inhibits hemichannels without altering gap junctional communication in astrocytes. Front Cell Neurosci 8:306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wang N, De BM, Decrock E, Bol M, Gadicherla A, Bultynck G, Leybaert L (2013) Connexin targeting peptides as inhibitors of voltage- and intracellular Ca2+-triggered Cx43 hemichannel opening. Neuropharmacology 75:506–516

    Article  CAS  PubMed  Google Scholar 

  71. Clair C, Combettes L, Pierre F, Sansonetti P, Van Tran NG (2008) Extracellular-loop peptide antibodies reveal a predominant hemichannel organization of connexins in polarized intestinal cells. Exp Cell Res 314:1250–1265

    Article  CAS  PubMed  Google Scholar 

  72. Siller-Jackson AJ, Burra S, Gu S, Xia X, Bonewald LF, Sprague E, Jiang JX (2008) Adaptation of connexin 43-hemichannel prostaglandin release to mechanical loading. J Biol Chem 283:26374–26382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Batra N, Burra S, Siller-Jackson AJ, Gu S, Xia X, Weber GF, DeSimone D, Bonewald LF, Lafer EM, Sprague E, Schwartz MA, Jiang JX (2012) Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci USA 109:3359–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC, Giaume C, Saez JC (2011) ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem 118:826–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dobrowolski R, Sasse P, Schrickel JW, Watkins M, Kim JS, Rackauskas M, Troatz C, Ghanem A, Tiemann K, Degen J, Bukauskas FF, Civitelli R, Lewalter T, Fleischmann BK, Willecke K (2008) The conditional connexin43G138R mouse mutant represents a new model of hereditary oculodentodigital dysplasia in humans. Hum Mol Genet 17:539–554

    Article  CAS  PubMed  Google Scholar 

  76. Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Sohl G, Jahnke K, Winterhager E, Herberhold C, Hardelin JP, Petit C, Willecke K (2003) Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12:13–21

    Article  CAS  PubMed  Google Scholar 

  77. Wiencken-Barger AE, Djukic B, Casper KB, McCarthy KD (2007) A role for Connexin43 during neurodevelopment. Glia 55:675–686

    Article  PubMed  Google Scholar 

  78. Bol M, Wang N, De BM, Wacquier B, Decrock E, Gadicherla A, Decaluwe K, Vanheel B, van Rijen HV, Krysko DV, Bultynck G, Dupont G, Van de Voorde J, Leybaert L (2017) At the cross-point of connexins, calcium and ATP: blocking hemichannels inhibits vasoconstriction of rat small mesenteric arteries. Cardiovasc Res 113:195–206

  79. Chen G, Park CK, Xie RG, Berta T, Nedergaard M, Ji RR (2014) Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain 137:2193–2209

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chever O, Lee CY, Rouach N (2014) Astroglial connexin43 hemichannels tune basal excitatory synaptic transmission. J Neurosci 34:11228–11232

    Article  PubMed  CAS  Google Scholar 

  81. Orellana JA, Saez JC, Bennett MV, Berman JW, Morgello S, Eugenin EA (2014) HIV increases the release of dickkopf-1 protein from human astrocytes by a Cx43 hemichannel-dependent mechanism. J Neurochem 128:752–763

    Article  CAS  PubMed  Google Scholar 

  82. Orellana JA, Busso D, Ramirez G, Campos M, Rigotti A, Eugenin J, von BR (2014) Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet. Front Cell Neurosci 8:403

    Article  PubMed  PubMed Central  Google Scholar 

  83. Orellana JA, Avendano BC, Montero TD (2014) Role of connexins and pannexins in ischemic stroke. Curr Med Chem 21:2165–2182

    Article  CAS  PubMed  Google Scholar 

  84. Retamal MA, Alcayaga J, Verdugo CA, Bultynck G, Leybaert L, Saez PJ, Fernandez R, Leon LE, Saez JC (2014) Opening of pannexin- and connexin-based channels increases the excitability of nodose ganglion sensory neurons. Front Cell Neurosci 8:158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Rovegno M, Soto PA, Saez PJ, Naus CC, Saez JC, von BR (2015) Connexin43 hemichannels mediate secondary cellular damage spread from the trauma zone to distal zones in astrocyte monolayers. Glia 63:1185–1199

    Article  PubMed  Google Scholar 

  86. Iacobas DA, Iacobas S, Urban-Maldonado M, Spray DC (2005) Sensitivity of the brain transcriptome to connexin ablation. Biochim Biophys Acta 1711:183–196

    Article  CAS  PubMed  Google Scholar 

  87. Iacobas DA, Iacobas S, Urban-Maldonado, M, Scemes E, Spray DC (2008) Similar transcriptomic alterations in Cx43 knockdown and knockout astrocytes. Cell Commun Adhes 15:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jansen JA, Noorman M, Musa H, Stein M, de JS, van der Nagel R, Hund TJ, Mohler PJ, Vos MA, van Veen TA, de Bakker JM, Delmar M, van Rijen HV (2012) Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice. Heart Rhythm 9:600–607

    Article  PubMed  Google Scholar 

  89. Agullo-Pascual E, Lin X, Leo-Macias A, Zhang M, Liang FX, Li Z, Pfenniger A, Lubkemeier I, Keegan S, Fenyo D, Willecke K, Rothenberg E, Delmar M (2014) Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc. Cardiovasc Res 104:371–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. May D, Tress O, Seifert G, Willecke K (2013) Connexin47 protein phosphorylation and stability in oligodendrocytes depend on expression of Connexin43 protein in astrocytes. J Neurosci 33:7985–7996

    Article  CAS  PubMed  Google Scholar 

  91. Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E (2009) Pannexin 1: the molecular substrate of astrocyte “hemichannels”. J Neurosci 29:7092–7097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li H, Liu TF, Lazrak A, Peracchia C, Goldberg GS, Lampe PD, Johnson RG (1996) Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells. J Cell Biol 134:1019–1030

    Article  CAS  PubMed  Google Scholar 

  93. Barrio LC, Suchyna T, Bargiello T, Xu LX, Roginski RS, Bennett MV, Nicholson BJ (1991) Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc Natl Acad Sci USA 88:8410–8414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bao X, Altenberg GA, Reuss L (2004) Mechanism of regulation of the gap junction protein connexin 43 by protein kinase C-mediated phosphorylation. Am J Physiol Cell Physiol 286:C647–C654

    Article  CAS  PubMed  Google Scholar 

  95. Cao F, Eckert R, Elfgang C, Nitsche JM, Snyder SA, ulser DF, Willecke K, Nicholson BJ (1998) A quantitative analysis of connexin-specific permeability differences of gap junctions expressed in HeLa transfectants and Xenopus oocytes. J Cell Sci 111(Pt 1):31–43

    CAS  PubMed  Google Scholar 

  96. Dahl G, Miller T, Paul D, Voellmy R, Werner R (1987) Expression of functional cell-cell channels from cloned rat liver gap junction complementary DNA. Science 236:1290–1293

    Article  CAS  PubMed  Google Scholar 

  97. Ek-Vitorin JF, Calero G, Morley GE, Coombs W, Taffet SM, Delmar M (1996) PH regulation of connexin43: molecular analysis of the gating particle. Biophys J 71:1273–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. DeVuyst E, Wang N, Decrock E, De BM, Vinken M, Van MM, Lai C, Culot M, Rogiers V, Cecchelli R, Naus CC, Evans WH, Leybaert L (2009) Ca(2+) regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium 46:176–187

    Article  CAS  Google Scholar 

  99. Ramachandran, S., Xie, L.H., John, S.A., Subramaniam S, Lal R (2007) A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS ONE. 2:e712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Alstrom JS, Hansen DB, Nielsen MS, MacAulay N (2015) Isoform-specific phosphorylation-dependent regulation of connexin hemichannels. J Neurophysiol 114:3014–3022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Valiunas V, Weingart R (2000) Electrical properties of gap junction hemichannels identified in transfected HeLa cells. Pflugers Arch 440:366–379

    Article  CAS  PubMed  Google Scholar 

  102. Essenfelder GM, Bruzzone R, Lamartine J, Charollais A, Blanchet-Bardon C, Barbe MT, Meda P, Waksman G (2004) Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum Mol Genet 13:1703–1714

    Article  CAS  PubMed  Google Scholar 

  103. Contreras JE, Saez JC, Bukauskas FF, Bennett MV (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA 100:11388–11393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Valiunas V (2013) Cyclic nucleotide permeability through unopposed connexin hemichannels. Front Pharmacol 4:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Saez JC, Leybaert L (2014) Hunting for connexin hemichannels. FEBS Lett 588:1205–1211

    Article  CAS  PubMed  Google Scholar 

  106. Retamal MA, Froger N, Palacios-Prado N, Ezan P, Saez PJ, Saez JC, Giaume C (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 27:13781–13792

    Article  CAS  PubMed  Google Scholar 

  107. John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN (1999) Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274:236–240

    Article  CAS  PubMed  Google Scholar 

  108. Fasciani I, Temperan A, Perez-Atencio LF, Escudero A, Martinez-Montero P, Molano J, Gomez-Hernandez JM, Paino CL, Gonzalez-Nieto D, Barrio LC (2013) Regulation of connexin hemichannel activity by membrane potential and the extracellular calcium in health and disease. Neuropharmacology 75:479–490

    Article  CAS  PubMed  Google Scholar 

  109. Ebihara L (1996) Xenopus connexin38 forms hemi-gap-junctional channels in the nonjunctional plasma membrane of Xenopus oocytes. Biophys J 71:742–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Scemes E, Spray DC, Meda P (2009) Connexins, pannexins, innexins: novel roles of “hemi-channels”. Pflugers Arch 457:1207–1226

    Article  CAS  PubMed  Google Scholar 

  111. Stroud RM, Savage D, Miercke LJ, Lee JK, Khademi S, Harries W (2003) Selectivity and conductance among the glycerol and water conducting aquaporin family of channels. FEBS Lett 555:79–84

    Article  CAS  PubMed  Google Scholar 

  112. Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidas S, Guggino WB, van Hoek AN, Hediger MA (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 273:24737–24743

    Article  CAS  PubMed  Google Scholar 

  113. Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, Tsukihara T (2009) Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature 458:597–602

    Article  CAS  PubMed  Google Scholar 

  114. Unger VM, Kumar NM, Gilula NB, Yeager M (1999) Three-dimensional structure of a recombinant gap junction membrane channel. Science 283:1176–1180

    Article  CAS  PubMed  Google Scholar 

  115. Cotrina ML, Lin JH, Lopez-Garcia JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844

    CAS  PubMed  Google Scholar 

  116. Chen MJ, Kress B, Han X, Moll K, Peng W, Ji RR, Nedergaard M (2012) Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury. Glia 60:1660–1670

    Article  PubMed  PubMed Central  Google Scholar 

  117. Huang C, Han X, Li X, Lam E, Peng W, Lou N, Torres A, Yang M, Garre JM, Tian GF, Bennett MV, Nedergaard M, Takano T (2012) Critical role of connexin 43 in secondary expansion of traumatic spinal cord injury. J Neurosci 32:3333–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Langevin HM, Fujita T, Bouffard NA, Takano T, Koptiuch C, Badger GJ, Nedergaard M (2013) Fibroblast cytoskeletal remodeling induced by tissue stretch involves ATP signaling. J Cell Physiol 228:1922–1926

    Article  CAS  PubMed  Google Scholar 

  119. Stridh MH, Tranberg M, Weber SG, Blomstrand F, Sandberg M (2008) Stimulated efflux of amino acids and glutathione from cultured hippocampal slices by omission of extracellular calcium: likely involvement of connexin hemichannels. J Biol Chem 283:10347–10356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ye B, Shen H, Zhang J, Zhu YG, Ransom BR, Chen XC, Ye ZC (2015) Dual pathways mediate beta-amyloid stimulated glutathione release from astrocytes. Glia 63:2208–2219

    Article  PubMed  Google Scholar 

  121. Zhang J, Zhang HY, Zhang M, Qiu ZY, Wu YP, Callaway DA, Jiang JX, Lu L, Jing L, Yang T, Wang MQ (2014) Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage. Osteoarthritis Cartil 22:822–830

  122. Fellin T, Pozzan T, Carmignoto G (2006) Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J Biol Chem 281:4274–4284

    Article  CAS  PubMed  Google Scholar 

  123. Liu HT, Tashmukhamedov BA, Inoue H, Okada Y, Sabirov RZ (2006) Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 54:343–357

    Article  PubMed  Google Scholar 

  124. Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281:21362–21368

    Article  CAS  PubMed  Google Scholar 

  125. Fenton RA, Moeller HB, Zelenina M, Snaebjornsson MT, Holen T, MacAulay N (2010) Differential water permeability and regulation of three aquaporin 4 isoforms. Cell Mol Life Sci 67:829–840

    Article  CAS  PubMed  Google Scholar 

  126. Joshi-Mukherjee R, Coombs W, Burrer C, de Mora IA, Delmar M, Taffet SM (2007) Evidence for the presence of a free C-terminal fragment of cx43 in cultured cells. Cell Commun Adhes 14:75–84

    Article  CAS  PubMed  Google Scholar 

  127. Giaume, C., Orellana, J.A., Abudara, V., Saez, J.C. 2012. Connexin-based channels in astrocytes: how to study their properties. In Milner R (ed), Astrocytes methods in molecular biology, Springer Protocols, Berlin, pp 283–303

    Google Scholar 

  128. Schalper KA, Palacios-Prado N, Orellana JA, Saez, JC (2008) Currently used methods for identification and characterization of hemichannels. Cell Commun Adhes 15:207–218

    Article  CAS  PubMed  Google Scholar 

  129. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2 × 7 receptor. EMBO J 25:5071–5082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E (2008) P2 × 7 receptor-Pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 295:C752–C760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nakazawa K, Liu M, Inoue K, Ohno Y (1997) Potent inhibition by trivalent cations of ATP-gated channels. Eur J Pharmacol 325:237–243

    Article  CAS  PubMed  Google Scholar 

  132. Beckel JM, Daugherty SL, Tyagi P, Wolf-Johnston AS, Birder LA, Mitchell CH, de Groat WC (2015) Pannexin 1 channels mediate the release of ATP into the lumen of the rat urinary bladder. J Physiol 593:1857–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sridharan M, Adderley SP, Bowles EA, Egan TM, Stephenson AH, Ellsworth ML, Sprague RS (2010) Pannexin 1 is the conduit for low oxygen tension-induced ATP release from human erythrocytes. Am J Physiol Heart Circ Physiol 299:H1146–H1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Suadicani SO, Brosnan CF, Scemes E (2006) P2 × 7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tovar KR, Maher BJ, Westbrook GL (2009) Direct actions of carbenoxolone on synaptic transmission and neuronal membrane properties. J Neurophysiol 102:974–978

    Article  PubMed  PubMed Central  Google Scholar 

  136. Braet K, Aspeslagh S, Vandamme W, Willecke K, Martin PE, Evans WH, Leybaert L (2003) Pharmacological sensitivity of ATP release triggered by photoliberation of inositol-1,4,5-trisphosphate and zero extracellular calcium in brain endothelial cells. J Cell Physiol 197:205–213

    Article  CAS  PubMed  Google Scholar 

  137. Vessey JP, Lalonde MR, Mizan HA, Welch NC, Kelly ME, Barnes S (2004) Carbenoxolone inhibition of voltage-gated Ca channels and synaptic transmission in the retina. J Neurophysiol 92:1252–1256

    Article  CAS  PubMed  Google Scholar 

  138. Seminario-Vidal L, Okada SF, Sesma JI, Kreda SM, van Heusden CA, Zhu Y, Jones LC, O’Neal WK, Penuela S, Laird DW, Boucher RC, Lazarowski ER (2011) Rho signaling regulates pannexin 1-mediated ATP release from airway epithelia. J Biol Chem 286:26277–26286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li K, Chi Y, Gao K, Yan Q, Matsue H, Takeda M, Kitamura M, Yao J (2013) Connexin43 hemichannel-mediated regulation of connexin43. PLoS ONE 8:e58057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Locovei S, Scemes E, Qiu F, Spray DC, Dahl G (2007) Pannexin1 is part of the pore forming unit of the P2 × (7) receptor death complex. FEBS Lett 581:483–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rae MG, Hilton J, Sharkey J (2012) Putative TRP channel antagonists, SKF 96365, flufenamic acid and 2-APB, are non-competitive antagonists at recombinant human alpha1beta2gamma2 GABA(A) receptors. Neurochem Int 60:543–554

    Article  CAS  PubMed  Google Scholar 

  142. Woodward RM, Polenzani L, Miledi R (1994) Effects of fenamates and other nonsteroidal anti-inflammatory drugs on rat brain GABAA receptors expressed in Xenopus oocytes. J Pharmacol Exp Ther 268:806–817

    CAS  PubMed  Google Scholar 

  143. Hu H, Tian J, Zhu Y, Wang C, Xiao R, Herz JM, Wood JD, Zhu MX (2010) Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflugers Arch 459:579–592

    Article  CAS  PubMed  Google Scholar 

  144. McCarty NA, McDonough S, Cohen BN, Riordan JR, Davidson N, Lester HA (1993) Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl- channel by two closely related arylaminobenzoates. J Gen Physiol 102:1–23

    Article  CAS  PubMed  Google Scholar 

  145. Ma W, Hui H, Pelegrin P, Surprenant A (2009) Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. J Pharmacol Exp Ther 328:409–418

    Article  CAS  PubMed  Google Scholar 

  146. Nathan RD, Kanai K, Clark RB, Giles W (1988) Selective block of calcium current by lanthanum in single bullfrog atrial cells. J Gen Physiol 91:549–572

    Article  CAS  PubMed  Google Scholar 

  147. Wei H, Deng F, Chen Y, Qin Y, Hao Y, Guo X (2014) Ultrafine carbon black induces glutamate and ATP release by activating connexin and pannexin hemichannels in cultured astrocytes. Toxicology 323:32–41

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Sundhed og Sygdom, Det Frie Forskningsråd (Grant No. 10-081105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanna MacAulay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, B.S., Hansen, D.B., Ransom, B.R. et al. Connexin Hemichannels in Astrocytes: An Assessment of Controversies Regarding Their Functional Characteristics. Neurochem Res 42, 2537–2550 (2017). https://doi.org/10.1007/s11064-017-2243-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2243-7

Keywords

Navigation