Skip to main content

Advertisement

Log in

Metabolism of Mannose in Cultured Primary Rat Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glucose is the main peripheral substrate for energy production in the brain. However, as other hexoses are present in blood and cerebrospinal fluid, we have investigated whether neurons have the potential to metabolize, in addition to glucose, also the hexoses mannose, fructose or galactose. Incubation of primary cerebellar granule neurons in the absence of glucose caused severe cell toxicity within 24 h, which could not be prevented by application of galactose or fructose, while the cells remained viable during incubation in the presence of either mannose or glucose. In addition, cultured neurons produced substantial and almost identical amounts of lactate after exposure to either glucose or mannose, while lactate production was low in the presence of fructose and hardly detectable during incubations without hexoses or with galactose as carbon source. Determination of the KM values of hexokinase in lysates of cultured neurons for the hexoses revealed values in the micromolar range for mannose (32 ± 2 µM) and glucose (59 ± 10 µM) and in the millimolar range for fructose (4.4 ± 2.3 mM), demonstrating that mannose is efficiently phosphorylated by neuronal hexokinase. Finally, cultured neurons contained reasonable specific activity of the enzyme phosphomannose isomerase, which is required for isomerization of the hexokinase product mannose-6-phosphate into the glycolysis intermediate fructose-6-phosphate. These data demonstrate that cultured cerebellar granule neurons have the potential and express the required enzymes to efficiently metabolize mannose, while galactose and fructose serve at best poorly as extracellular carbon sources for neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36:587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brekke E, Morken TS, Sonnewald U (2015) Glucose metabolism and astrocyte–neuron interactions in the neonatal brain. Neurochem Int 82:33–41

    Article  CAS  PubMed  Google Scholar 

  3. Szablewski L (2017) Glucose transporters in brain: in health and in Alzheimer’s disease. J Alzheimers Dis 55:1307–1320

    Article  CAS  PubMed  Google Scholar 

  4. Pitkänen E (1996) Mannose, mannitol, fructose and 1,5-anhydroglucitol concentrations measured by gas chromatography/mass spectrometry in blood plasma of diabetic patients. Clin Chim Acta 251:91–103

    Article  PubMed  Google Scholar 

  5. Soyama K (1984) Enzymatic determination of d-mannose in serum. Clin Chem 30:293–294

    CAS  PubMed  Google Scholar 

  6. Ning C, Segal S (2000) Plasma galactose and galactitol concentration in patients with galactose-1-phosphate uridyltransferase deficiency galactosemia: determination by gas chromatography/mass spectrometry. Metabolism 49:1460–1466

    Article  CAS  PubMed  Google Scholar 

  7. Le MT, Frye RF, Rivard CJ, Cheng J, McFann KK, Segal MS, Johnson RJ, Johnson JA (2012) Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects. Metabolism 61:641–651

    Article  CAS  PubMed  Google Scholar 

  8. Meyerovitch J, Farfel Z, Sack J, Shechter Y (1987) Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. Characterization and mode of action. J Biol Chem 262:6658–6662

    CAS  PubMed  Google Scholar 

  9. Patching SG (2017) Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol 54:1046–1077

    Article  CAS  PubMed  Google Scholar 

  10. Shu HJ, Isenberg K, Cormier RJ, Benz A, Zorumski CF (2006) Expression of fructose sensitive glucose transporter in the brains of fructose-fed rats. Neuroscience 140:889–895

    Article  CAS  PubMed  Google Scholar 

  11. Mortensen OH, Larsen LH, Orstrup LK, Hansen LH, Grunnet N, Quistorff B (2014) Developmental programming by high fructose decreases phosphorylation efficiency in aging offspring brain mitochondria, correlating with enhanced UCP5 expression. J Cereb Blood Flow Metab 34:1205–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oldendorf WH (1971) Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol 221:1629–1639

    CAS  PubMed  Google Scholar 

  13. Kusmierz J, DeGeorge JD, Sweeney D, May C, Rapoport SI (1989) Quantitative analysis of polyols in human plasma and cerebrospinal fluid. J Chromatogr B Biomed Sci Appl 497:39–48

    Article  CAS  Google Scholar 

  14. Wiesinger H, Hamprecht B, Dringen R (1997) Metabolic pathways for glucose in astrocytes. Glia 21:22–34

    Article  CAS  PubMed  Google Scholar 

  15. Wiesinger H, Thiess U, Hamprecht B (1990) Sorbitol pathway activity and utilization of polyols in astroglia-rich primary cultures. Glia 3:277–282

    Article  CAS  PubMed  Google Scholar 

  16. Dringen R, Hamprecht B (1993) Differences in glycogen metabolism in astroglia-rich primary cultures and sorbitol-selected astroglial cultures derived from mouse brain. Glia 8:143–149

    Article  CAS  PubMed  Google Scholar 

  17. Dringen R, Bergbauer K, Wiesinger H, Hamprecht B (1994) Utilization of mannose by astroglial cells. Neurochem Res 19:23–30

    Article  CAS  PubMed  Google Scholar 

  18. Blumrich EM, Kadam R, Dringen R (2016) The protein tyrosine kinase inhibitor tyrphostin 23 strongly accelerates glycolytic lactate production in cultured primary astrocytes. Neurochem Res 41:2607–2618

    Article  CAS  PubMed  Google Scholar 

  19. Westhaus A, Blumrich EM, Dringen R (2017) The antidiabetic drug metformin stimulates glycolytic lactate production in cultured primary rat astrocytes. Neurochem Res 42:294–305

    Article  CAS  PubMed  Google Scholar 

  20. Sols A, Crane RK (1954) Substrate specificity of brain hexokinase. J Biol Chem 210:581–595

    CAS  PubMed  Google Scholar 

  21. Bergbauer K, Dringen R, Verleysdonk S, Gebhardt R, Hamprecht B, Wiesinger H (1996) Studies on fructose metabolism in cultured astroglial cells and control hepatocytes: lack of fructokinase activity and immunoreactivity in astrocytes. Dev Neurosci 18:371–379

    Article  CAS  PubMed  Google Scholar 

  22. Kizer DE, McCoy TA (1960) Phosphomannose isomerase activity in a spectrum of normal and malignant rat tissues. Proc Soc Exp Biol Med 103:772–774

    Article  CAS  PubMed  Google Scholar 

  23. Forsyth RJ, Bartlett K, Burchell A, Scott HM, Eyre JA (1993) Astrocytic glucose-6-phosphatase and the permeability of brain microsomes to glucose 6-phosphate. Biochem J 294:145–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown AM, Wender R, Ransom BR (2001) Metabolic substrates other than glucose support axon function in central white matter. J Neurosci Res 66:839–843

    Article  CAS  PubMed  Google Scholar 

  25. Wada H, Okada Y, Uzuo T, Nakamura H (1998) The effects of glucose, mannose, fructose and lactate on the preservation of neural activity in the hippocampal slices from the guinea pig. Brain Res 788:144–150

    Article  CAS  PubMed  Google Scholar 

  26. Izumi Y, Zorumski CF (2009) Glial-neuronal interactions underlying fructose utilization in rat hippocampal slices. Neuroscience 161:847–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saitoh M, Okada Y, Nabetani M (1994) Effect of mannose, fructose and lactate on the preservation of synaptic potentials in hippocampal slices. Neurosci Lett 171:125–128

    Article  CAS  PubMed  Google Scholar 

  28. Funari VA, Crandall JE, Tolan DR (2007) Fructose metabolism in the cerebellum. Cerebellum 6:130–140

    Article  CAS  PubMed  Google Scholar 

  29. Meakin PJ, Fowler MJ, Rathbone AJ, Allen LM, Ransom BR, Ray DE, Brown AM (2007) Fructose metabolism in the adult mouse optic nerve, a central white matter tract. J Cereb Blood Flow Metab 27:86–99

    Article  CAS  PubMed  Google Scholar 

  30. Hassel B, Elsais A, Froland AS, Tauboll E, Gjerstad L, Quan Y, Dingledine R, Rise F (2015) Uptake and metabolism of fructose by rat neocortical cells in vivo and by isolated nerve terminals in vitro. J Neurochem 133:572–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Slovitter HA, Kamimoto T (1970) The isolated, perfused rat brain preperation metabolizes mannose but not maltose. J Neurochem 17:1109–1111

    Article  Google Scholar 

  32. Clarke DD, Sokoloff L (1999) Circulation and energy metabolim of the brain. In: Siegel GJ, Agranoff BW, Albers RW (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6 edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  33. Tulpule K, Hohnholt MC, Hirrlinger J, Dringen R (2014) Primary cultures of astrocytes and neurons as model systems to study the metabolism and metabolite export from brain cells. In: Hirrlinger J, Waagepetersen HS (eds) Neuromethods 90: brain energy metabolism. Springer, New York, pp 45–72

    Google Scholar 

  34. Hamprecht B, Loffler F (1985) Primary glial cultures as a model for studying hormone action. Methods Enzymol 109:341–345

    Article  CAS  PubMed  Google Scholar 

  35. Dringen R, Kussmaul L, Hamprecht B (1998) Detoxification of exogenous hydrogen peroxide and organic hydroperoxides by cultured astroglial cells assessed by microtiter plate assay. Brain Res Protoc 2:223–228

    Article  CAS  Google Scholar 

  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  37. Dringen R, Gebhardt R, Hamprecht B (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623:208–214

    Article  CAS  PubMed  Google Scholar 

  38. Lundgaard I, Li B, Xie L, Kang H, Sanggaard S, Haswell JD, Sun W, Goldman S, Blekot S, Nielsen M, Takano T, Deane R, Nedergaard M (2015) Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun 6:1–12

    Article  Google Scholar 

  39. Cheng B, Mattson MP (1991) NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron 7:1031–1041

    Article  CAS  PubMed  Google Scholar 

  40. Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M, Blomgren K, Plesnila N (2005) Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci 25:10262–10272

    Article  CAS  PubMed  Google Scholar 

  41. Tulpule K, Hohnholt MC, Dringen R (2013) Formaldehyde metabolism and formaldehyde-induced stimulation of lactate production and glutathione export in cultured neurons. J Neurochem 125:260–272

    Article  CAS  PubMed  Google Scholar 

  42. Hohnholt MC, Blumrich EM, Dringen R (2015) Multiassay analysis of the toxic potential of hydrogen peroxide on cultured neurons. J Neurosci Res 93:1127–1137

    Article  CAS  PubMed  Google Scholar 

  43. Walz W, Mukerji S (1988) Lactate release from cultured astrocytes and neurons: a comparison. Glia 1:366–370

    Article  CAS  PubMed  Google Scholar 

  44. Bolanos JP, Heales SJ, Land JM, Clark JB (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64:1965–1972

    Article  CAS  PubMed  Google Scholar 

  45. Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E, Sokoloff L (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA 100:4879–4884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tadepalle N, Koehler Y, Brandmann M, Meyer N, Dringen R (2014) Arsenite stimulates glutathione export and glycolytic flux in viable primary rat brain astrocytes. Neurochem Int 76:1–11

    Article  CAS  PubMed  Google Scholar 

  47. Maher F, Davies-Hill TM, Simpson IA (1996) Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons. Biochem J 315:827–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vannucci SJ (1994) Developmental expression of GLUT1 and GLUT3 glucose transporters in rat brain. J Neurochem 62:240–246

    Article  CAS  PubMed  Google Scholar 

  49. Leino RL, Gerhart DZ, van Bueren AM, McCall AL, Drewes LR (1997) Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain. J Neurosci Res 49:617–626

    Article  CAS  PubMed  Google Scholar 

  50. Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ (2008) The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295:E242–E253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grossbard L, Schimke RT (1966) Multiple hexokinases of rat tissues. Purification and comparison of soluble forms. J Biol Chem 241:3546–3560

    CAS  PubMed  Google Scholar 

  52. Lusk JA, Manthorpe CM, Kao-Jen J, Wilson JE (1980) Predominance of the cytoplasmic form of brain hexokinase in cultured astrocytes. J Neurochem 34:1412–1420

    Article  CAS  PubMed  Google Scholar 

  53. Levey HA, Szego CM (1955) Metabolic characteristics of the guinea pig seminal vesicle. Am J Physiol 182:507–512

    CAS  PubMed  Google Scholar 

  54. Lee JB, Vance VK, Cahill GF (1962) Metabolism of 14C-labeled substrates by rabbit kidney cortex and medulla. Am J Physiol 203:27–36

    CAS  PubMed  Google Scholar 

  55. Hara M, Matsuda Y, Hirai K, Okumura N, Nakagawa H (1989) Characteristics of glucose transport in neuronal cells and astrocytes from rat brain in primary culture. J Neurochem 52:902–908

    Article  CAS  PubMed  Google Scholar 

  56. Scheepers A, Joost HG, Schurmann A (2004) The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenter Enteral Nutr 28:364–371

    Article  CAS  Google Scholar 

  57. Laughlin M (2014) Normal roles for dietary fructose in carbohydrate metabolism. Nutrients 6:3117

    Article  PubMed  PubMed Central  Google Scholar 

  58. Poppe R, Karbach U, Gambaryan S, Wiesinger H, Lutzenburg M, Kraemer M, Witte OW, Koepsell H (1997) Expression of the Na+-d-glucose cotransporter SGLT1 in neurons. J Neurochem 69:84–94

    Article  CAS  PubMed  Google Scholar 

  59. Kojo A, Yamada K, Yamamoto T (2016) Glucose transporter 5 (GLUT5)-like immunoreactivity is localized in subsets of neurons and glia in the rat brain. J Chem Neuroanat 74:55–70

    Article  CAS  PubMed  Google Scholar 

  60. Welsh FA, Sims RE, McKee AE (1983) Effect of glucose on recovery of energy metabolism following hypoxia-oligemia in mouse brain: dose-dependence and carbohydrate specificity. J Cereb Blood Flow Metab 3:486–492

    Article  CAS  PubMed  Google Scholar 

  61. Schwarz HP, Gennari K, Siegrist HP, Zuppinger K, Schafer T, Wiesmann U, Herschkowitz N (1985) Utilization of galactose in cultured brain cells of neonatal mice. Pediatr Res 19:52–57

    Article  CAS  PubMed  Google Scholar 

  62. Shah K, Desilva S, Abbruscato T (2012) The role of glucose transporters in brain disease: diabetes and Alzheimer’s Disease. Int J Mol Sci 13:12629–12655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Giroix M-H, Malaisse-Lagae F, Sener A, Malaisse WJ (1985) Hexose metabolism in pancreatic islets. Galactose transport, phosphorylation and oxidation. Mol Cell Biochem 66:61–64

    Article  CAS  PubMed  Google Scholar 

  64. Rogers SR, Bovee BW, Saunders SL, Segal S (1989) Galactose as a regulatory factor of its own metabolism by rat liver. Metabolism 38:810–815

    Article  CAS  PubMed  Google Scholar 

  65. Shin-Buehring YS, Beier T, Tan A, Osang M, Schaub J (1977) The activity of galactose-1-phosphate uridyltransferase and galactokinase in human fetal organs. Pediatr Res 11:1045–1051

    Article  CAS  PubMed  Google Scholar 

  66. Popovici T, Berwald-Netter Y, Vibert M, Kahn A, Skala H (1990) Localization of aldolase C mRNA in brain cells. FEBS Lett 268:189–193

    Article  CAS  PubMed  Google Scholar 

  67. Buono P, D’Armiento FP, Terzi G, Alfieri A, Salvatore F (2001) Differential distribution of aldolase A and C in the human central nervous system. J Neurocytol 30:957–965

    Article  CAS  PubMed  Google Scholar 

  68. Kitzmueller E, Greber S, Lubec G, Fountoulakis M (2001) Carbohydrate handling enzymes in fetal Down Syndrome brain. In: Lubec G (ed) Protein expression in down syndrome brain. Springer, Vienna, pp 203–210

    Chapter  Google Scholar 

  69. Wang Z, Gardiner NJ, Fernyhough P (2008) Blockade of hexokinase activity and binding to mitochondria inhibits neurite outgrowth in cultured adult rat sensory neurons. Neurosci Lett 434:6–11

    Article  CAS  PubMed  Google Scholar 

  70. Katoh-Semba R, Keino H, Kashiwamata S (1988) A possible contribution by glial cells to neuronal energy production enzyme-histochemical studies in the developing rat cerebellum. Cell Tissue Res 252:133–139

    Article  CAS  PubMed  Google Scholar 

  71. Booth RF, Patel TB, Clark JB (1980) The development of enzymes of energy metabolism in the brain of a precocial (guinea pig) and non-precocial (rat) species. J Neurochem 34:17–25

    Article  CAS  PubMed  Google Scholar 

  72. Coerver KA, Gray SM, Barnes JE, Armstrong DL, McCabe ER (1998) Developmental expression of hexokinase 1 and 3 in rats. Histochem Cell Biol 109:75–86

    Article  CAS  PubMed  Google Scholar 

  73. Lynch RM, Fogarty KE, Fay FS (1991) Modulation of hexokinase association with mitochondria analyzed with quantitative three-dimensional confocal microscopy. J Cell Biol 112:385–395

    Article  CAS  PubMed  Google Scholar 

  74. Gardiner NJ, Wang Z, Luke C, Gott A, Price SA, Fernyhough P (2007) Expression of hexokinase isoforms in the dorsal root ganglion of the adult rat and effect of experimental diabetes. Brain Res 1175:143–154

    Article  CAS  PubMed  Google Scholar 

  75. Jacobsson G, Meister B (1994) Hexokinase I messenger RNA in the rat central nervous system. Mol Cell Neurosci 5:658–677

    Article  CAS  PubMed  Google Scholar 

  76. Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C, Guha A (2011) Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. ‎J Exp Med 208:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gaitonde MK, Murray E, Cunningham VJ (1989) Effect of 6-phosphogluconate on phosphoglucose isomerase in rat brain in vitro and in vivo. J Neurochem 52:1348–1352

    Article  CAS  PubMed  Google Scholar 

  78. Dringen R, Hoepken HH, Minich T, Ruedig C (2007) Pentose phosphate pathway and NADPH metabolism. In: Lajtha A, Gibson GE, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology: brain energetics. Integration of molecular and cellular processes. Springer, Boston, pp 41–62

    Chapter  Google Scholar 

  79. Rodriguez-Rodriguez P, Fernandez E, Bolanos JP (2013) Underestimation of the pentose-phosphate pathway in intact primary neurons as revealed by metabolic flux analysis. J Cereb Blood Flow Metab 33:1843–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chaput M, Claes V, Portetelle D, Cludts I, Cravador A, Burny A, Gras H, Tartar A (1988) The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature 332:454–455

    Article  CAS  PubMed  Google Scholar 

  81. Jeffery CJ, Bahnson BJ, Chien W, Ringe D, Petsko GA (2000) Crystal structure of rabbit phosphoglucose isomerase, a glycolytic enzyme that moonlights as neuroleukin, autocrine motility factor, and differentiation mediator. BioChemistry 39:955–964

    Article  CAS  PubMed  Google Scholar 

  82. Agnew WF, Crone C (1967) Permeability of brain capillaries to xexoses and pentoses in the rabbit. Acta Physiol Scand 70:168–175

    Article  CAS  Google Scholar 

  83. Herman RH (1971) Mannose metabolism. I. Am J Clin Nutr 24:488–498

    CAS  PubMed  Google Scholar 

  84. Torre ER, Steward O (1996) Protein synthesis within dendrites: glycosylation of newly synthesized proteins in dendrites of hippocampal neurons in culture. J Neurosci 16:5967–5978

    CAS  PubMed  Google Scholar 

  85. Alton G, Hasilik M, Niehues R, Panneerselvam K, Etchison JR, Fana F, Freeze HH (1998) Direct utilization of mannose for mammalian glycoprotein biosynthesis. Glycobiology 8:285–295

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Dringen.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Wiebke Rastedt and Eva-Maria Blumrich have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastedt, W., Blumrich, EM. & Dringen, R. Metabolism of Mannose in Cultured Primary Rat Neurons. Neurochem Res 42, 2282–2293 (2017). https://doi.org/10.1007/s11064-017-2241-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2241-9

Keywords

Navigation