Skip to main content
Log in

Inhibition of Calcineurin A by FK506 Suppresses Seizures and Reduces the Expression of GluN2B in Membrane Fraction

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

FK506, a calcineurin inhibitor, shows neuroprotective effects and has been associated with neurodegenerative diseases. Calcineurin A (CaNA), a catalytic subunit of calcineurin, mediates the dephosphorylation of various proteins. N-methyl-d-aspartate receptor (GluN) is closely related to epileptogenesis, and various phosphorylation sites of GluN2B, a regulatory subunit of the GluN complex, have different functions. Thus, we hypothesized that one of the potential anti-epileptic mechanisms of FK506 is mediated by its ability to promote the phosphorylation of GluN2B and reduce the expression of GluN2B in membrane fraction by down-regulating CaNA. CaNA expression was increased in the cortex of patients with temporal lobe epilepsy and pentylenetetrazol (PTZ)-induced epileptic models. CaNA was shown to be expressed in neurons using immunofluorescence staining. According to our behavioral observations, epileptic rats exhibited less severe seizures and were less sensitive to PTZ after a systemic injection of FK506. The levels of phosphorylated GluN2B were decreased in epileptic rats but increased after the FK506 treatment. Moreover, there was no difference in the total GluN2B levels before and after FK506 treatment. However, the expression of GluN2B in membrane fraction was suppressed after FK506 treatment. Based on these results, FK506 may reduce the severity and frequency of seizures by reducing the expression of GluN2B in membrane fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CaN:

Calcineurin

CaNA:

Calcineurin A

GluN:

N-methyl-d-aspartate receptor

TLE:

Temporal lobe epilepsy.

PTZ:

Pentylenetetrazol

SRS:

Spontaneous recurrent seizures

GluRs:

Glutamate receptors

CaM:

Calmodulin

CREB:

cAMP response element-binding protein

NFAT:

Nuclear factor of activated T cells

BAD:

Bcl2-associated death promoter

EPSCs:

Excitatory postsynaptic currents

CsA:

Cyclosporin A

BDNF:

Brain-derived neurotrophic factor

GluA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

KA:

Kainic acid

References

  1. Singh A, Trevick S (2016) The epidemiology of global epilepsy. Neurol Clin 34(4):837–847. doi:10.1016/j.ncl.2016.06.015

    Article  PubMed  Google Scholar 

  2. Babb TL, Kupfer WR, Pretorius JK et al (1991) Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 42(2):351–363

    Article  CAS  PubMed  Google Scholar 

  3. Fisher RS, van Emde Boas W, Blume W et al (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4):470–472. doi:10.1111/j.0013-9580.2005.66104.x

    Article  PubMed  Google Scholar 

  4. Weiner JL, Buhler AV, Whatley VJ et al (1998) Colchicine is a competitive antagonist at human recombinant gamma-aminobutyric acidA receptors. J Pharmacol Exp Ther 284(1):95–102

    CAS  PubMed  Google Scholar 

  5. Missiaen L, Robberecht W, van den Bosch L et al (2000) Abnormal intracellular Ca(2+)homeostasis and disease. Cell Calcium 28(1):1–21. doi:10.1054/ceca.2000.0131

    Article  CAS  PubMed  Google Scholar 

  6. Isokawa M (2005) N-methyl-D-aspartic acid-induced and Ca-dependent neuronal swelling and its retardation by brain-derived neurotrophic factor in the epileptic hippocampus. Neuroscience 131(4):801–812. doi:10.1016/j.neuroscience.2004.12.008

    Article  CAS  PubMed  Google Scholar 

  7. Yilmaz M, Naziroğlu M, Kutluhan S et al (2011) Topiramate modulates hippocampus NMDA receptors via brain Ca(2+) homeostasis in pentylentetrazol-induced epilepsy of rats. J Recept Signal Transduct Res 31(2):173–179. doi:10.3109/10799893.2011.555914

    Article  CAS  PubMed  Google Scholar 

  8. Shah SZ, Hussain T, Zhao D et al (2016) A central role for calcineurin in protein misfolding neurodegenerative diseases. Cell Mol Life Sci. doi:10.1007/s00018-016-2379-7

    Google Scholar 

  9. Lieberman DN, Mody I (1994) Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Nature 369(6477):235–239. doi:10.1038/369235a0

    Article  CAS  PubMed  Google Scholar 

  10. Fukuta T, Ishii T, Asai T et al (2015) Treatment of stroke with liposomal neuroprotective agents under cerebral ischemia conditions. Eur J Pharm Biopharm 97(Pt A):1–7. doi:10.1016/j.ejpb.2015.09.020

    Article  CAS  PubMed  Google Scholar 

  11. Zawadzka M, Dabrowski M, Gozdz A et al (2012) Early steps of microglial activation are directly affected by neuroprotectant FK506 in both in vitro inflammation and in rat model of stroke. J Mol Med 90(12):1459–1471. doi:10.1007/s00109-012-0925-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rozkalne A, Hyman BT, Spires-Jones TL (2011) Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice. Neurobiol Dis 41(3):650–654. doi:10.1016/j.nbd.2010.11.014

    Article  CAS  PubMed  Google Scholar 

  13. Quintanilla RA, Jin YN, von Bernhardi R (2013) Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease. Mol Neurodegener 8:45. doi:10.1186/1750-1326-8-45

    Article  PubMed  PubMed Central  Google Scholar 

  14. Seeburg PH (1993) The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 16(9):359–365

    Article  CAS  PubMed  Google Scholar 

  15. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294

    Article  CAS  PubMed  Google Scholar 

  16. Nishimura T, Imai H, Minabe Y et al (2006) Beneficial effects of FK506 for experimental temporal lobe epilepsy. Neurosci Res 56(4):386–390. doi:10.1016/j.neures.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  17. Fang M, Wei JL, Tang B et al (2016) Neuroligin-1 knockdown suppresses seizure activity by regulating neuronal hyperexcitability. Mol Neurobiol 53(1):270–284. doi:10.1007/s12035-014-8999-8

    Article  CAS  PubMed  Google Scholar 

  18. Goto S, Matsukado Y, Mihara Y et al (1986) The distribution of calcineurin in rat brain by light and electron microscopic immunohistochemistry and enzyme-immunoassay. Brain Res 397(1):161–172

    Article  CAS  PubMed  Google Scholar 

  19. Goto S, Matsukado Y, Mihara Y et al (1986) Calcineurin in human brain and its relation to extrapyramidal system. Immunohistochemical study on postmortem human brains. Acta Neuropathol 72(2):150–156

    Article  CAS  PubMed  Google Scholar 

  20. Bito H, Deisseroth K, Tsien RW (1996) CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87(7):1203–1214

    Article  CAS  PubMed  Google Scholar 

  21. Kingsbury TJ, Bambrick LL, Roby CD et al (2007) Calcineurin activity is required for depolarization-induced, CREB-dependent gene transcription in cortical neurons. J Neurochem 103(2):761–770. doi:10.1111/j.1471-4159.2007.04801.x

    Article  CAS  PubMed  Google Scholar 

  22. Wei Q, Holzer M, Brueckner MK et al (2002) Dephosphorylation of tau protein by calcineurin triturated into neural living cells. Cell Mol Neurobiol 22(1):13–24

    Article  CAS  PubMed  Google Scholar 

  23. Yin Y, Gao D, Wang Y et al (2016) Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling. Proc Natl Acad Sci USA 113(26):E3773–E3781. doi:10.1073/pnas.1604519113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Minami T (2014) Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated? J Biochem 155(4):217–226. doi:10.1093/jb/mvu006

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Wang Y, Zhang W et al (2016) Phenylephrine promotes cardiac fibroblast proliferation through calcineurin-NFAT pathway. Front Biosci 21:502–513

    Article  Google Scholar 

  26. Wu HY, Hudry E, Hashimoto T et al (2010) Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J Neurosci 30(7):2636–2649. doi:10.1523/JNEUROSCI.4456-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245. doi:10.1146/annurev.biochem.69.1.217

    Article  CAS  PubMed  Google Scholar 

  28. Liu F, Grundke-Iqbal I, Iqbal K et al (2005) Truncation and activation of calcineurin A by calpain I in Alzheimer disease brain. J Biol Chem 280(45):37755–37762. doi:10.1074/jbc.M507475200

    Article  CAS  PubMed  Google Scholar 

  29. Dineley KT, Kayed R, Neugebauer V et al (2010) Amyloid-beta oligomers impair fear conditioned memory in a calcineurin-dependent fashion in mice. J Neurosci Res 88(13):2923–2932. doi:10.1002/jnr.22445

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hong HS, Hwang JY, Son SM et al (2010) FK506 reduces amyloid plaque burden and induces MMP-9 in AβPP/PS1double transgenic mice. J Alzheimers Dis 22(1):97–105. doi:10.3233/JAD-2010-100261

    Article  CAS  PubMed  Google Scholar 

  31. Kawakami M, Yoshimoto T, Nakagata N et al (2011) Effects of cyclosporin A administration on gene expression in rat brain. Brain Inj 25(6):614–623. doi:10.3109/02699052.2011.571229

    Article  PubMed  Google Scholar 

  32. Overk CR, Rockenstein E, Florio J et al (2015) Differential calcium alterations in animal models of neurodegenerative disease: reversal by FK506. Neuroscience 310:549–560. doi:10.1016/j.neuroscience.2015.08.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lakshmikuttyamma A, Selvakumar P, Tuchek J et al (2008) Myristoyltransferase and calcineurin: novel molecular therapeutic target for epilepsy. Prog Neurobiol 84(1):77–84. doi:10.1016/j.pneurobio.2007.09.004

    Article  CAS  PubMed  Google Scholar 

  34. Lie AA, Blümcke I, Beck H et al (1998) Altered patterns of Ca2+/calmodulin-dependent protein kinase II and calcineurin immunoreactivity in the hippocampus of patients with temporal lobe epilepsy. J Neuropathol Exp Neurol 57(11):1078–1088

    Article  CAS  PubMed  Google Scholar 

  35. Ingram EA, Toyoda I, Wen X et al (2009) Prolonged infusion of inhibitors of calcineurin or L-type calcium channels does not block mossy fiber sprouting in a model of temporal lobe epilepsy. Epilepsia 50(1):56–64. doi:10.1111/j.1528-1167.2008.01704.x

    Article  CAS  PubMed  Google Scholar 

  36. Koyama R, Ikegaya Y (2004) Mossy fiber sprouting as a potential therapeutic target for epilepsy. Curr Neurovasc Res 1(1):3–10

    Article  PubMed  Google Scholar 

  37. Proper EA, Oestreicher AB, Jansen GH et al (2000) Immunohistochemical characterization of mossy fibre sprouting in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 123(Pt1):19–30

    Article  PubMed  Google Scholar 

  38. Fang M, Xi ZQ, Wu Y et al (2011) A new hypothesis of drug refractory epilepsy: neural network hypothesis. Med Hypotheses 76(6):871–876. doi:10.1016/j.mehy.2011.02.039

    Article  CAS  PubMed  Google Scholar 

  39. Thomas U, Sigrist SJ (2012) Glutamate receptors in synaptic assembly and plasticity: case studies on fly NMJs. Adv Exp Med Biol 970:3–28. doi:10.1007/978-3-7091-0932-8

    Article  CAS  PubMed  Google Scholar 

  40. Manabe T (2004) Synaptic plasticity and NMDA-type glutamate receptors. Tanpakushitsu Kakusan Koso 49(3 Suppl):398–404

    CAS  PubMed  Google Scholar 

  41. Upreti C, Zhang XL, Alford S et al (2013) Role of presynaptic metabotropic glutamate receptors in the induction of long-term synaptic plasticity of vesicular release. Neuropharmacology 66:31–39. doi:10.1016/j.neuropharm.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  42. Huettner JE (2015) Glutamate receptor pores. J Physiol 593(1):49–59. doi:10.1113/jphysiol.2014.272724

    Article  CAS  PubMed  Google Scholar 

  43. Sachser RM, Santana F, Crestani AP et al (2016) Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin. Sci Rep 6:22771. doi:10.1038/srep22771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim S, Violette CJ, Ziff EB (2015) Reduction of increased calcineurin activity rescues impaired homeostatic synaptic plasticity in presenilin 1 M146V mutant. Neurobiol. Aging 36(12):3239–3246. doi:10.1016/j.neurobiolaging.2015.09.007

    CAS  Google Scholar 

  45. Kim S, Ziff EB (2014) Calcineurin mediates synaptic scaling via synaptic trafficking of Ca2+-permeable AMPA receptors. PLoS Biol 12(7):e1001900. doi:10.1371/journal.pbio.1001900

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kam AY, Liao D, Loh HH et al (2010) Morphine induces AMPA receptor internalization in primary hippocampal neurons via calcineurin-dependent dephosphorylation of GluR1 subunits. J Neurosci 30(45):15304–15316. doi:10.1523/JNEUROSCI.4255-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao WQ, Santini F, Breese R et al (2010) Inhibition of calcineurin-mediated endocytosis and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents amyloid beta oligomer-induced synaptic disruption. J Biol Chem 285(10):7619–7632. doi:10.1074/jbc.M109.057182

    Article  CAS  PubMed  Google Scholar 

  48. Halt AR, Dallapiazza RF, Zhou Y et al (2012) CaMKII binding to GluN2B is critical during memory consolidation. EMBO J 31(5):1203–1216. doi:10.1038/emboj.2011.482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sanhueza M, Fernandez-Villalobos G, Stein IS et al (2011) Role of the CaMKII/NMDA receptor complex in the maintenance of synaptic strength. J Neurosci 31(25):9170–9178. doi:10.1523/JNEUROSCI.1250-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tu W, Xu X, Peng L et al (2010) DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140(2):222–234. doi:10.1016/j.cell.2009.12.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liao GY, Wagner DA, Hsu MH et al (2001) Evidence for direct protein kinase-C mediated modulation of N-methyl-D-aspartate receptor current. Mol Pharmacol 59(5):960–964

    CAS  PubMed  Google Scholar 

  52. Sanz-Clemente A, Matta JA, Isaac JT et al (2010) Casein kinase 2 regulates the NR2 subunit composition of synaptic NMDA receptors. Neuron 67(6):984–996. doi:10.1016/j.neuron.2010.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Prybylowski K, Chang K, Sans N et al (2005) The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47(6):845–857. doi:10.1016/j.neuron.2005.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chung HJ, Huang YH, Lau LF et al (2004) Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 24(45):10248–10259. doi:10.1523/JNEUROSCI.0546-04.2004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of Chongqing Health Bureau (2013-1-005). We sincerely thank the support of Chongqing Key Laboratory of Neurology, which provided the brain tissue samples. We also thank the patients and families for the donation of brains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanhong Shi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standareds of the Chongqing Medical University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standareds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Fu, P., Wu, K. et al. Inhibition of Calcineurin A by FK506 Suppresses Seizures and Reduces the Expression of GluN2B in Membrane Fraction. Neurochem Res 42, 2154–2166 (2017). https://doi.org/10.1007/s11064-017-2221-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2221-0

Keywords

Navigation