Skip to main content

Advertisement

Log in

Astroglial Vesicular Trafficking in Neurodegenerative Diseases

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The neocortex represents one of the largest estates of the human brain. This structure comprises ~30–40 billions of neurones and even more of non-neuronal cells. Astrocytes, highly heterogeneous homoeostatic glial cells, are fundamental for housekeeping of the brain and contribute to information processing in neuronal networks. Gray matter astrocytes tightly enwrap synapses, contact blood vessels and, naturally, are also in contact with the extracellular space, where convection of fluid takes place. Thus astrocytes receive signals from several distinct extracellular domains and can get excited by numerous mechanisms, which regulate cytosolic concentration of second messengers, such as Ca2+ and cAMP. Excited astrocytes often secrete diverse substances (generally referred to as gliosignalling molecules) that include classical neurotransmitters such as glutamate and ATP or neuromodulators such as d-serine or neuropeptides. Astrocytic secretion occurs through several mechanisms: by diffusion through membrane channels, by translocation via plasmalemmal transporters or by vesicular exocytosis. Vesicular release of gliosignalling molecules appears fundamentally similar to that operating in neurones, since it depends on the SNARE proteins-dependent merger of the vesicle membrane with the plasmalemma. However, the coupling between the stimulus and astroglial vesicular secretion is at least one order of magnitude slower than that in neurones. Here we review mechanisms of astrocytic excitability and the molecular, anatomical and physiological properties of vesicular apparatus mediating the release of gliosignalling molecules in health and in the neurodegenerative pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from [158]

Fig. 3

Similar content being viewed by others

Abbreviations

GPCRs:

G-protein coupled receptors

LC:

Locus coeruleus

NA:

Norepinephrine

References

  1. Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59(6):932–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Versammlung Südwestdeutscher Irrenärzte in Tübingen am 3. November 1906. Allgemeine Zeitschrift für Psychiatrie und Psychisch-Gerichtliche Medizin 64:146–148

    Google Scholar 

  3. Alzheimer A (1910) Beiträge zur Kenntnis der pathologischen Neuroglia und ihrer Beziehungen zu den Abbauvorgängen im Nervengewebe. In: Franz Nissl AA (ed) Histologische und histopathologische Arbeiten über die Grosshirnrinde mit besonderer Berücksichtigung der pathologischen Anatomie der Geisteskrankheiten. G. Fischer, Jena, pp 401–562

    Google Scholar 

  4. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215

    Article  CAS  PubMed  Google Scholar 

  5. Bal-Price A, Moneer Z, Brown GC (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40(3):312–323

    Article  PubMed  Google Scholar 

  6. Balázs R, Miller S, Chun Y, O’Toole J, Cotman CW (1998) Metabotropic glutamate receptor agonists potentiate cyclic AMP formation induced by forskolin or beta-adrenergic receptor activation in cerebral cortical astrocytes in culture. J Neurochem 70(6):2446–2458

    Article  PubMed  Google Scholar 

  7. Barois N, Forquet F, Davoust J (1998) Actin microfilaments control the MHC class II antigen presentation pathway in B cells. J Cell Sci 111(Pt 13):1791–1800

    CAS  PubMed  Google Scholar 

  8. Beach TG, McGeer EG (1988) Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer’s disease visual cortex. Brain Res 463(2):357–361

    Article  CAS  PubMed  Google Scholar 

  9. Benarroch EE (2009) The locus ceruleus norepinephrine system: functional organization and potential clinical significance. Neurology 73(20):1699–1704

    Article  PubMed  Google Scholar 

  10. Bergersen LH, Gundersen V (2009) Morphological evidence for vesicular glutamate release from astrocytes. Neuroscience 158(1):260–265

    Article  CAS  PubMed  Google Scholar 

  11. Bergersen LH, Morland C, Ormel L, Rinholm JE, Larsson M, Wold JF, Røe AT, Stranna A, Santello M, Bouvier D and others (2012) Immunogold detection of l-glutamate and d-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb Cortex 22(7):1690–1697

    Article  CAS  PubMed  Google Scholar 

  12. Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19(6):1297–1308

    Article  CAS  PubMed  Google Scholar 

  13. Bernardinelli Y, Muller D, Nikonenko I (2014) Astrocyte-synapse structural plasticity. Neural Plast 2014:232105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391(6664):281–285

    Article  CAS  PubMed  Google Scholar 

  15. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7(6):613–620

    Article  CAS  PubMed  Google Scholar 

  16. Bicknell RJ, Luckman SM, Inenaga K, Mason WT, Hatton GI (1989) Beta-adrenergic and opioid receptors on pituicytes cultured from adult rat neurohypophysis: regulation of cell morphology. Brain Res Bull 22(2):379–388

    Article  CAS  PubMed  Google Scholar 

  17. Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83(2):581–632

    Article  CAS  PubMed  Google Scholar 

  18. Busche MA, Kekus M, Adelsberger H, Noda T, Forstl H, Nelken I, Konnerth A (2015) Rescue of long-range circuit dysfunction in Alzheimer’s disease models. Nat Neurosci 18(11):1623–1630

    Article  CAS  PubMed  Google Scholar 

  19. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192

    CAS  PubMed  Google Scholar 

  20. Calegari F, Coco S, Taverna E, Bassetti M, Verderio C, Corradi N, Matteoli M, Rosa P (1999) A regulated secretory pathway in cultured hippocampal astrocytes. J Biol Chem 274(32):22539–22547

    Article  CAS  PubMed  Google Scholar 

  21. Calejo AI, Jorgacevski J, Kucka M, Kreft M, Gonçalves PP, Stojilkovic SS, Zorec R (2013) cAMP-mediated stabilization of fusion pores in cultured rat pituitary lactotrophs. J Neurosci 33(18):8068–8078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen X, Wang L, Zhou Y, Zheng LH, Zhou Z (2005) “Kiss-and-run” glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J Neurosci 25(40):9236–9243

    Article  CAS  PubMed  Google Scholar 

  23. Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278(2):1354–1362

    Article  CAS  PubMed  Google Scholar 

  24. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941):470–473

    Article  CAS  PubMed  Google Scholar 

  25. Crippa D, Schenk U, Francolini M, Rosa P, Verderio C, Zonta M, Pozzan T, Matteoli M, Carmignoto G (2006) Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular characterization, dynamics and exocytosis. J Physiol 570(Pt 3):567–582

    Article  CAS  PubMed  Google Scholar 

  26. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  CAS  PubMed  Google Scholar 

  27. De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164(4):603–615

    Article  PubMed  CAS  Google Scholar 

  28. DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27(5):457–464

    Article  CAS  PubMed  Google Scholar 

  29. Ding F, O’Donnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L, Wang F, Nedergaard M (2013) α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54:387–394

    Article  CAS  PubMed  Google Scholar 

  30. Flasker A, Jorgacevski J, Calejo AI, Kreft M, Zorec R (2013) Vesicle size determines unitary exocytic properties and their sensitivity to sphingosine. Mol Cell Endocrinol 376(1–2):136–147

    Article  CAS  PubMed  Google Scholar 

  31. Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63(3):844–914

    CAS  PubMed  Google Scholar 

  32. Frohman EM, Vayuvegula B, Gupta S, van den Noort S (1988) Norepinephrine inhibits gamma-interferon-induced major histocompatibility class II (Ia) antigen expression on cultured astrocytes via beta-2-adrenergic signal transduction mechanisms. Proc Natl Acad Sci USA 85(4):1292–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gharami K, Das S (2004) Delayed but sustained induction of mitogen-activated protein kinase activity is associated with beta-adrenergic receptor-mediated morphological differentiation of astrocytes. J Neurochem 88(1):12–22

    Article  CAS  PubMed  Google Scholar 

  34. Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14(7):1324–1335

    Article  CAS  PubMed  Google Scholar 

  35. Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54(3):214–222

    Article  PubMed  Google Scholar 

  36. Gibbs ME, Hutchinson DS, Summers RJ (2010) Noradrenaline release in the locus coeruleus modulates memory formation and consolidation; roles for α- and β-adrenergic receptors. Neuroscience 170(4):1209–1222

    Article  CAS  PubMed  Google Scholar 

  37. Goldman JE, Abramson B (1990) Cyclic AMP-induced shape changes of astrocytes are accompanied by rapid depolymerization of actin. Brain Res 528(2):189–196

    Article  CAS  PubMed  Google Scholar 

  38. Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL 3rd, Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86(19):7611–7615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143

    Article  CAS  PubMed  Google Scholar 

  40. Gucek A, Jorgacevski J, Singh P, Geisler C, Lisjak M, Vardjan N, Kreft M, Egner A, Zorec R (2016) Dominant negative SNARE peptides stabilize the fusion pore in a narrow, release-unproductive state. Cell Mol Life Sci 73(19):3719-3731

    Article  CAS  Google Scholar 

  41. Gucek A, Vardjan N, Zorec R (2012) Exocytosis in astrocytes: transmitter release and membrane signal regulation. Neurochem Res 37(11):2351–2363

    Article  CAS  PubMed  Google Scholar 

  42. Gundersen V, Storm-Mathisen J, Bergersen LH (2015) Neuroglial transmission. Physiol Rev 95(3):695–726

    Article  CAS  PubMed  Google Scholar 

  43. Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Haydon PG, Frank MG (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61(2):213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11(4):227–238

    Article  CAS  PubMed  Google Scholar 

  45. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75(5):762–777

    Article  CAS  PubMed  Google Scholar 

  46. Hatton GI, Luckman SM, Bicknell RJ (1991) Adrenalin activation of beta 2-adrenoceptors stimulates morphological changes in astrocytes (pituicytes) cultured from adult rat neurohypophyses. Brain Res Bull 26(5):765–769

    Article  CAS  PubMed  Google Scholar 

  47. Heller JP, Rusakov DA (2015) Morphological plasticity of astroglia: understanding synaptic microenvironment. Glia 63:2133–2151

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM and others (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405

    Article  CAS  PubMed  Google Scholar 

  49. Heneka MT, Rodriguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63(1–2):189–211

    Article  CAS  PubMed  Google Scholar 

  50. Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463(7278):232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hepp R, Perraut M, Chasserot-Golaz S, Galli T, Aunis D, Langley K, Grant NJ (1999) Cultured glial cells express the SNAP-25 analogue SNAP-23. Glia 27(2):181–187

    Article  CAS  PubMed  Google Scholar 

  52. Hertz L, Gibbs ME (2009) What learning in day-old chickens can teach a neurochemist: focus on astrocyte metabolism. J Neurochem 109(Suppl 1):10–16

    Article  CAS  PubMed  Google Scholar 

  53. Hines DJ, Haydon PG (2013) Inhibition of a SNARE-sensitive pathway in astrocytes attenuates damage following stroke. J Neurosci 33(10):4234–4240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hirase H, Qian L, Barthó P, Buzsáki G (2004) Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2(4):E96

    Article  PubMed  PubMed Central  Google Scholar 

  55. Horvat A, Zorec R, Vardjan N. 2016. Adrenergic stimulation of single rat astrocytes results in distinct temporal changes in intracellular Ca2+ and cAMP-dependent PKA responses. Cell Calcium

  56. Hur YS, Kim KD, Paek SH, Yoo SH (2010) Evidence for the existence of secretory granule (dense-core vesicle)-based inositol 1,4,5-trisphosphate-dependent Ca2+ signaling system in astrocytes. PLoS One 5(8):e11973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Jaiswal JK, Andrews NW, Simon SM (2002) Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J Cell Biol 159(4):625–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jaiswal JK, Fix M, Takano T, Nedergaard M, Simon SM (2007) Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. Proc Natl Acad Sci USA 104(35):14151–14156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jiménez AI, Castro E, Mirabet M, Franco R, Delicado EG, Miras-Portugal MT (1999) Potentiation of ATP calcium responses by A2B receptor stimulation and other signals coupled to Gs proteins in type-1 cerebellar astrocytes. Glia 26(2):119–128

    Article  PubMed  Google Scholar 

  60. Johansen JP, Diaz-Mataix L, Hamanaka H, Ozawa T, Ycu E, Koivumaa J, Kumar A, Hou M, Deisseroth K, Boyden ES and others (2014) Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation. Proc Natl Acad Sci USA 111(51):E5584–E5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jorgacevski J, Potokar M, Grilc S, Kreft M, Liu W, Barclay JW, Buckers J, Medda R, Hell SW, Parpura V and others (2011) Munc18-1 tuning of vesicle merger and fusion pore properties. J Neurosci 31(24):9055–9066

    Article  CAS  PubMed  Google Scholar 

  62. Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10(3):331–339

    Article  CAS  PubMed  Google Scholar 

  63. Kang N, Peng H, Yu Y, Stanton PK, Guilarte TR, Kang J (2013) Astrocytes release d-serine by a large vesicle. Neuroscience 240:243–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kano M, Hashimoto K (2009) Synapse elimination in the central nervous system. Curr Opin Neurobiol 19(2):154–161

    Article  CAS  PubMed  Google Scholar 

  65. Kasai H, Takahashi N, Tokumaru H (2012) Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol Rev 92(4):1915–1964

    Article  CAS  PubMed  Google Scholar 

  66. Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77:10–18

    Article  CAS  PubMed  Google Scholar 

  67. Kirischuk S, Parpura V, Verkhratsky A (2012) Sodium dynamics: another key to astroglial excitability? Trends Neurosci 35(8):497–506

    Article  CAS  PubMed  Google Scholar 

  68. Kirischuk S, Tuschick S, Verkhratsky A, Kettenmann H (1996) Calcium signalling in mouse Bergmann glial cells mediated by α1-adrenoreceptors and H1 histamine receptors. Eur J Neurosci 8:1198–1208

    Article  CAS  PubMed  Google Scholar 

  69. Kirov SA, Sorra KE, Harris KM (1999) Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J Neurosci 19(8):2876–2886

    CAS  PubMed  Google Scholar 

  70. Klyachko V, Jackson M (2002) Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418(6893):89–92

    Article  CAS  PubMed  Google Scholar 

  71. Kreft M, Krizaj D, Grilc S, Zorec R (2003) Properties of exocytotic response in vertebrate photoreceptors. J Neurophysiol 90(1):218–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kreft M, Lukšič M, Zorec TM, Prebil M, Zorec R (2013) Diffusion of d-glucose measured in the cytosol of a single astrocyte. Cell Mol Life Sci 70(8):1483–1492

    Article  CAS  PubMed  Google Scholar 

  73. Kreft M, Stenovec M, Rupnik M, Grilc S, Krzan M, Potokar M, Pangrsic T, Haydon PG, Zorec R (2004a) Properties of Ca2+-dependent exocytosis in cultured astrocytes. Glia 46(4):437–445

  74. Kreft M, Stenovec M, Rupnik M, Grilc S, Krzan M, Potokar M, Pangrsic T, Haydon PG, Zorec R (2004b) Properties of Ca(2+)-dependent exocytosis in cultured astrocytes. Glia 46(4):437–445

  75. Krzan M, Stenovec M, Kreft M, Pangrsic T, Grilc S, Haydon PG, Zorec R (2003) Calcium-dependent exocytosis of atrial natriuretic peptide from astrocytes. J Neurosci 23(5):1580–1583

    CAS  PubMed  Google Scholar 

  76. Kulijewicz-Nawrot M, Verkhratsky A, Chvátal A, Syková E, Rodríguez JJ (2012) Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer’s disease. J Anat 221(3):252–262

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12(1):e1001747

    Article  PubMed  PubMed Central  Google Scholar 

  78. Li D, Hérault K, Silm K, Evrard A, Wojcik S, Oheim M, Herzog E, Ropert N (2013) Lack of evidence for vesicular glutamate transporter expression in mouse astrocytes. J Neurosci 33(10):4434–4455

    Article  CAS  PubMed  Google Scholar 

  79. Li D, Ropert N, Koulakoff A, Giaume C, Oheim M (2008) Lysosomes are the major vesicular compartment undergoing Ca2+-regulated exocytosis from cortical astrocytes. J Neurosci 28(30):7648–7658

    Article  CAS  PubMed  Google Scholar 

  80. Liu T, Sun L, Xiong Y, Shang S, Guo N, Teng S, Wang Y, Liu B, Wang C, Wang L et al (2011) Calcium triggers exocytosis from two types of organelles in a single astrocyte. J Neurosci 31(29):10593–10601

    Article  CAS  PubMed  Google Scholar 

  81. Li H, Wang X, Zhang N, Gottipati MK, Parpura V, Ding S (2014) Imaging of mitochondrial Ca2+ dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5G/6 s: mitochondrial Ca2+ uptake and cytosolic Ca2+ availability via the endoplasmic reticulum store. Cell Calcium 56:457–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lushnikova I, Skibo G, Muller D, Nikonenko I (2009) Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus. Hippocampus 19:753–762

    Article  PubMed  Google Scholar 

  83. Maienschein V, Marxen M, Volknandt W, Zimmermann H (1999) A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26(3):233–244

    Article  CAS  PubMed  Google Scholar 

  84. Malarkey EB, Parpura V (2011) Temporal characteristics of vesicular fusion in astrocytes: examination of synaptobrevin 2-laden vesicles at single vesicle resolution. J Physiol 589(Pt 17):4271–4300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Martineau M, Galli T, Baux G, Mothet JP (2008) Confocal imaging and tracking of the exocytotic routes for d-serine-mediated gliotransmission. Glia 56(12):1271–1284

    Article  PubMed  Google Scholar 

  86. Martineau M, Shi T, Puyal J, Knolhoff AM, Dulong J, Gasnier B, Klingauf J, Sweedler JV, Jahn R, Mothet JP (2013) Storage and uptake of d-serine into astrocytic synaptic-like vesicles specify gliotransmission. J Neurosci 33(8):3413–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mather M, Harley CW (2016) The locus coeruleus: essential for maintaining cognitive function and the aging brain. Trends Cogn Sci 20(3):214–226

    Article  PubMed  PubMed Central  Google Scholar 

  88. Montana V, Liu W, Mohideen U, Parpura V (2009) Single molecule measurements of mechanical interactions within ternary SNARE complexes and dynamics of their disassembly: SNAP25 vs. SNAP23. J Physiol 587(Pt 9):1943–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V (2006) Vesicular transmitter release from astrocytes. Glia 54(7):700–715

    Article  PubMed  Google Scholar 

  90. Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d-serine. Proc Natl Acad Sci USA 102(15):5606–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26(3):349–354

    Article  CAS  PubMed  Google Scholar 

  92. Nadjar A, Blutstein T, Aubert A, Laye S, Haydon PG (2013) Astrocyte-derived adenosine modulates increased sleep pressure during inflammatory response. Glia 61(5):724–731

    Article  PubMed  Google Scholar 

  93. Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25(5):663–674

    Article  CAS  PubMed  Google Scholar 

  94. Nedergaard M, Verkhratsky A (2012) Artifact versus reality-how astrocytes contribute to synaptic events. Glia 60:1013–1023

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nedergaard M, Rodriguez JJ, Verkhratsky A (2010) Glial calcium and diseases of the nervous system. Cell Calcium 47(2):140–149

    Article  CAS  PubMed  Google Scholar 

  96. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29(10):547–553

    Article  CAS  PubMed  Google Scholar 

  97. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular abeta and synaptic dysfunction. Neuron 39(3):409–421

    Article  CAS  PubMed  Google Scholar 

  98. Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 58(7):831–838

    PubMed  Google Scholar 

  99. Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ (2011) Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission?. Mol Neurodegener 6:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29(4):788–806

    CAS  PubMed  Google Scholar 

  101. Ostroff LE, Manzur MK, Cain CK, Ledoux JE (2014) Synapses lacking astrocyte appear in the amygdala during consolidation of pavlovian threat conditioning. J Comp Neurol 522(9):2152–2163

    Article  PubMed  PubMed Central  Google Scholar 

  102. Oya M, Kitaguchi T, Yanagihara Y, Numano R, Kakeyama M, Ikematsu K, Tsuboi T (2013) Vesicular nucleotide transporter is involved in ATP storage of secretory lysosomes in astrocytes. Biochem Biophys Res Commun 438(1):145–151

  103. Paco S, Margelí MA, Olkkonen VM, Imai A, Blasi J, Fischer-Colbrie R, Aguado F (2009) Regulation of exocytotic protein expression and Ca2+-dependent peptide secretion in astrocytes. J Neurochem 110(1):143–156

    Article  CAS  PubMed  Google Scholar 

  104. Paco S, Pozas E, Aguado F (2010) Secretogranin III is an astrocyte granin that is overexpressed in reactive glia. Cereb Cortex 20(6):1386–1397

    Article  PubMed  Google Scholar 

  105. Pangrsic T (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282:28749–28758

    Article  CAS  PubMed  Google Scholar 

  106. Pangrsic T, Potokar M, Stenovec M, Kreft M, Fabbretti E, Nistri A, Pryazhnikov E, Khiroug L, Giniatullin R, Zorec R (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282(39):28749–28758

    Article  CAS  PubMed  Google Scholar 

  107. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369(6483):744–747

    Article  CAS  PubMed  Google Scholar 

  108. Parpura V, Fang Y, Basarsky T, Jahn R, Haydon PG (1995) Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett 377(3):489–492

    Article  CAS  PubMed  Google Scholar 

  109. Parpura V, Verkhratsky A (2012) The astrocyte excitability brief: from receptors to gliotransmission. Neurochem Int 61(4):610–621

    Article  CAS  PubMed  Google Scholar 

  110. Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63(1–2):83–92

    Article  CAS  PubMed  Google Scholar 

  111. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310(5745):113–116

    Article  CAS  PubMed  Google Scholar 

  112. Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17(20):7817–7830

    CAS  PubMed  Google Scholar 

  113. Pasti L, Zonta M, Pozzan T, Vicini S, Carmignoto G (2001) Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci 21(2):477–484

    CAS  PubMed  Google Scholar 

  114. Perea G, Araque A (2007) Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317(5841):1083–1086

    Article  CAS  PubMed  Google Scholar 

  115. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8):421–431

    Article  CAS  PubMed  Google Scholar 

  116. Plattner H, Verkhratsky A (2015) The ancient roots of calcium signalling evolutionary tree. Cell Calcium 57:123–132

    Article  CAS  PubMed  Google Scholar 

  117. Potokar M, Kreft M, Lee SY, Takano H, Haydon PG, Zorec R (2009) Trafficking of astrocytic vesicles in hippocampal slices. Biochem Biophys Res Commun 390(4):1192–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Potokar M, Kreft M, Pangrsic T, Zorec R (2005) Vesicle mobility studied in cultured astrocytes. Biochem Biophys Res Commun 329(2):678–683

    Article  CAS  PubMed  Google Scholar 

  119. Potokar M, Stenovec M, Gabrijel M, Li L, Kreft M, Grilc S, Pekny M, Zorec R (2010) Intermediate filaments attenuate stimulation-dependent mobility of endosomes/lysosomes in astrocytes. Glia 58(10):1208–1219

    PubMed  Google Scholar 

  120. Potokar M, Stenovec M, Kreft M, Kreft ME, Zorec R (2008) Stimulation inhibits the mobility of recycling peptidergic vesicles in astrocytes. Glia 56(2):135–144

    Article  PubMed  Google Scholar 

  121. Potokar M, Vardjan N, Stenovec M, Gabrijel M, Trkov S, Jorgačevski J, Kreft M, Zorec R (2013) Astrocytic vesicle mobility in health and disease. Int J Mol Sci 14(6):11238–11258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Prada I, Marchaland J, Podini P, Magrassi L, D’Alessandro R, Bezzi P, Meldolesi J (2011) REST/NRSF governs the expression of dense-core vesicle gliosecretion in astrocytes. J Cell Biol 193(3):537–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pryazhnikov E, Khiroug L (2008) Sub-micromolar increase in [Ca2+]i triggers delayed exocytosis of ATP in cultured astrocytes. Glia 56(1):38–49

    Article  PubMed  Google Scholar 

  124. Racchetti G, D’Alessandro R, Meldolesi J (2012) Astrocyte stellation, a process dependent on Rac1 is sustained by the regulated exocytosis of enlargeosomes. Glia 60(3):465–475

    Article  PubMed  Google Scholar 

  125. Ramamoorthy P, Whim MD (2008) Trafficking and fusion of neuropeptide Y-containing dense-core granules in astrocytes. J Neurosci 28(51):13815–13827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Reichenbach A, Derouiche A, Kirchhoff F (2010) Morphology and dynamics of perisynaptic glia. Brain Res Rev 63:11–25

    Article  PubMed  Google Scholar 

  127. Rodriguez-Vieitez E, Saint-Aubert L, Carter SF, Almkvist O, Farid K, Schöll M, Chiotis K, Thordardottir S, Graff C, Wall A et al (2016) Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain 139(Pt 3):922–936

    Article  PubMed  PubMed Central  Google Scholar 

  128. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322(5907):1551–1555

    Article  CAS  PubMed  Google Scholar 

  129. Rusakov DA, Kullmann DM (1998) Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J Neurosci 18(9):3158–3170

    CAS  PubMed  Google Scholar 

  130. Rusakov DA, Zheng K, Henneberger C (2011) Astrocytes as regulators of synaptic function: a quest for the Ca2+ master key. Neuroscientist 17(5):513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sabatini BL, Regehr WG (1999) Timing of synaptic transmission. Annu Rev Physiol 61:521–542

    Article  CAS  PubMed  Google Scholar 

  132. Safavi-Abbasi S, Wolff JR, Missler M (2001) Rapid morphological changes in astrocytes are accompanied by redistribution but not by quantitative changes of cytoskeletal proteins. Glia 36(1):102–115

    Article  CAS  PubMed  Google Scholar 

  133. Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, Yamamoto A, Moriyama Y (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci USA 105(15):5683–5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Scheff SW, Scott SA, DeKosky ST (1991) Quantitation of synaptic density in the septal nuclei of young and aged Fischer 344 rats. Neurobiol Aging 12(1):3–12

    Article  CAS  PubMed  Google Scholar 

  135. Schubert V, Bouvier D, Volterra A (2011) SNARE protein expression in synaptic terminals and astrocytes in the adult hippocampus: a comparative analysis. Glia 59(10):1472–1488

    Article  PubMed  Google Scholar 

  136. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    CAS  PubMed  Google Scholar 

  137. Shain W, Forman DS, Madelian V, Turner JN (1987) Morphology of astroglial cells is controlled by beta-adrenergic receptors. J Cell Biol 105(5):2307–2314

    Article  CAS  PubMed  Google Scholar 

  138. Shao Y, Enkvist MO, McCarthy KD (1994) Glutamate blocks astroglial stellation: effect of glutamate uptake and volume changes. Glia 11(1):1–10

    Article  CAS  PubMed  Google Scholar 

  139. Sild M, Van Horn MR (2013) Astrocytes use a novel transporter to fill gliotransmitter vesicles with d-serine: evidence for vesicular synergy. J Neurosci 33(25):10193–10194

    Article  CAS  PubMed  Google Scholar 

  140. Singh P, Jorgačevski J, Kreft M, Grubišić V, Stout RF, Potokar M, Parpura V, Zorec R (2014) Single-vesicle architecture of synaptobrevin2 in astrocytes. Nat Commun 5:3780

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Son SM, Cha MY, Choi H, Kang S, Lee MS, Park SA, Mook-Jung I (2016) Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy 12(5):784–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Soos JM, Morrow J, Ashley TA, Szente BE, Bikoff EK, Zamvil SS (1998) Astrocytes express elements of the class II endocytic pathway and process central nervous system autoantigen for presentation to encephalitogenic T cells. J Immunol 161(11):5959–5966

    CAS  PubMed  Google Scholar 

  143. Stenovec M (2007) Ca2+-dependent mobility of vesicles capturing anti-VGLUT1 antibodies. Exp Cell Res 313:3809–3818

    Article  CAS  PubMed  Google Scholar 

  144. Stenovec M, Kreft M, Grilc S, Pangrsic T, Zorec R (2008) EAAT2 density at the astrocyte plasma membrane and Ca2+-regulated exocytosis. Mol Membr Biol 25(3):203–215

    Article  CAS  PubMed  Google Scholar 

  145. Stenovec M, Trkov S, Lasič E, Terzieva S, Kreft M, Rodríguez Arellano JJ, Parpura V, Verkhratsky A, Zorec R (2016) Expression of familial Alzheimer disease presenilin 1 gene attenuates vesicle traffic and reduces peptide secretion in cultured astrocytes devoid of pathologic tissue environment. Glia 64(2):317–329

    Article  PubMed  Google Scholar 

  146. Strassnig M, Ganguli M. 2005. About a peculiar disease of the cerebral cortex: Alzheimer’s original case revisited. Psychiatry (Edgmont) 2(9):30–33

    PubMed  PubMed Central  Google Scholar 

  147. Südhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4(1):a011353

    Article  PubMed  PubMed Central  Google Scholar 

  148. Sultan S, Li L, Moss J, Petrelli F, Casse F, Gebara E, Lopatar J, Pfrieger FW, Bezzi P, Bischofberger J and others (2015) Synaptic integration of adult-born hippocampal neurons is locally controlled by astrocytes. Neuron 88(5):957–972

    Article  CAS  PubMed  Google Scholar 

  149. Takamori S, Holt M, Stenius K, Lemke E, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P and others (2006) Molecular anatomy of a trafficking organelle. Cell 127(4):831–846

    Article  CAS  PubMed  Google Scholar 

  150. Terry RD (2000) Cell death or synaptic loss in Alzheimer disease. J Neuropathol Exp Neurol 59(12):1118–1119

    Article  CAS  PubMed  Google Scholar 

  151. Thrane AS, Rangroo Thrane V, Nedergaard M (2014) Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci 37(11):620–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Turner JR, Ecke LE, Briand LA, Haydon PG, Blendy JA (2013) Cocaine-related behaviors in mice with deficient gliotransmission. Psychopharmacology (Berl) 226(1):167–176

    Article  CAS  Google Scholar 

  153. Vardjan N, Gabrijel M, Potokar M, Svajger U, Kreft M, Jeras M, de Pablo Y, Faiz M, Pekny M, Zorec R (2012) IFN-δ-induced increase in the mobility of MHC class II compartments in astrocytes depends on intermediate filaments. J Neuroinflamm 9:144

    Article  CAS  Google Scholar 

  154. Vardjan N, Horvat A, Anderson JE, Yu D, Croom D, Zeng X, Luznik Z, Kreft M, Teng YD, Kirov SA and others (2016) Adrenergic activation attenuates astrocyte swelling induced by hypotonicity and neurotrauma. Glia 64(6):1034–1049

    PubMed  Google Scholar 

  155. Vardjan N, Kreft M, Zorec R (2014a) Dynamics of β-adrenergic/cAMP signaling and morphological changes in cultured astrocytes. Glia 62(4):566-579

  156. Vardjan N, Kreft M, Zorec R (2014b) Regulated exocytosis in astrocytes is as slow as the metabolic availability of gliotransmitters: focus on glutamate and ATP. Adv Neurobiol 11:81–101.

  157. Vardjan N, Verkhratsky A, Zorec R (2015) Pathologic potential of astrocytic vesicle traffic: new targets to treat neurologic diseases? Cell Transplant 24(4):599–612

    Article  PubMed  Google Scholar 

  158. Vardjan N, Zorec R (2015) Excitable astrocytes: Ca2+- and cAMP-regulated exocytosis. Neurochem Res 40(12):2414–2414

    Article  CAS  PubMed  Google Scholar 

  159. Vascotto F, Lankar D, Faure-André G, Vargas P, Diaz J, Le Roux D, Yuseff MI, Sibarita JB, Boes M, Raposo G and others (2007) The actin-based motor protein myosin II regulates MHC class II trafficking and BCR-driven antigen presentation. J Cell Biol 176(7):1007–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Vekrellis K, Ye Z, Qiu WQ, Walsh D, Hartley D, Chesneau V, Rosner MR, Selkoe DJ (2000) Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci 20(5):1657–1665

    CAS  PubMed  Google Scholar 

  161. Verderio C, Cagnoli C, Bergami M, Francolini M, Schenk U, Colombo A, Riganti L, Frassoni C, Zuccaro E, Danglot L et al (2012) TI-VAMP/VAMP7 is the SNARE of secretory lysosomes contributing to ATP secretion from astrocytes. Biol Cell 104(4):213–228

    Article  CAS  PubMed  Google Scholar 

  162. Verkhratsky A, Marutle A, Rodríguez-Arellano JJ, Nordberg A (2015) Glial asthenia and functional paralysis: a new perspective on neurodegeneration and Alzheimer’s disease. Neuroscientist 21:552–568

  163. Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R (2016a) Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 35:239–257

  164. Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond B Biol Sci 369(1654):20130595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78(1):99–141

    CAS  PubMed  Google Scholar 

  166. Verkhratsky A, Parpura V (2015) Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders. Neurobiol Dis 85:254–261

    Article  PubMed  PubMed Central  Google Scholar 

  167. Verkhratsky A, Parpura V, Pekna M, Pekny M, Sofroniew M (2014) Glia in the pathogenesis of neurodegenerative diseases. Biochem Soc Trans 42(5):1291–1301

  168. Verkhratsky A, Rodriguez JJ, Parpura V. (2012) Calcium signalling in astroglia. Mol Cell Endocrinol 353(1–2):45–56.

    Article  CAS  PubMed  Google Scholar 

  169. Verkhratsky A, Zorec R, Rodríguez JJ, Parpura V (2016b) Astroglia dynamics in ageing and Alzheimer’s disease. Curr Opin Pharmacol 26:74–79

  170. Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca2+ signalling: an unexpected complexity. Nat Rev Neurosci 15(5):327–335

    Article  CAS  PubMed  Google Scholar 

  171. Vyas JM, Kim YM, Artavanis-Tsakonas K, Love JC, Van der Veen AG, Ploegh HL (2007) Tubulation of class II MHC compartments is microtubule dependent and involves multiple endolysosomal membrane proteins in primary dendritic cells. J Immunol 178(11):7199–7210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wilhelm A, Volknandt W, Langer D, Nolte C, Kettenmann H, Zimmermann H (2004) Localization of SNARE proteins and secretory organelle proteins in astrocytes in vitro and in situ. Neurosci Res 48(3):249–257

    Article  CAS  PubMed  Google Scholar 

  173. Won CL, Oh YS (2000) cAMP-induced stellation in primary astrocyte cultures with regional heterogeneity. Brain Res 887(2):250–258

    Article  CAS  PubMed  Google Scholar 

  174. Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY, Oh SJ, Hwang EM, Marmorstein AD, Bae YC and others (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151(1):25–40

    Article  CAS  PubMed  Google Scholar 

  175. Wubbolts R, Fernandez-Borja M, Jordens I, Reits E, Dusseljee S, Echeverri C, Vallee RB, Neefjes J (1999) Opposing motor activities of dynein and kinesin determine retention and transport of MHC class II-containing compartments. J Cell Sci 112(Pt 6):785–795

    CAS  PubMed  Google Scholar 

  176. Xu-Friedman MA, Harris KM, Regehr WG (2001) Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci 21:6666–6672

    CAS  PubMed  Google Scholar 

  177. Yeh CY, Vadhwana B, Verkhratsky A, Rodríguez JJ (2011) Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer’s disease. ASN Neuro 3(5):271–279

    Article  CAS  PubMed  Google Scholar 

  178. Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG (2004a) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci USA 101(25):9441–9446

  179. Zhang Q, Pangrsic T, Kreft M, Krzan M, Li N, Sul JY, Halassa M, Van Bockstaele E, Zorec R, Haydon PG (2004b) Fusion-related release of glutamate from astrocytes. J Biol Chem 279(13):12724–12733

  180. Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu XS, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9(8):945–953

    Article  CAS  PubMed  Google Scholar 

  181. Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 4(2):e00082

    Article  CAS  Google Scholar 

  182. Zorec R, Horvat A, Vardjan N, Verkhratsky A (2015) Memory formation shaped by astroglia. Front Integr Neurosci 9:56.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Zorec R, Verkhratsky A, Rodriguez JJ, Parpura V (2016) Astrocytic vesicles and gliotransmitters: Slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture. Neuroscience 323:67–75

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants P3 310, J3 4051, J3 3632, J3 6790, J3 6789 and J3 4146 from the Slovenian Research Agency (ARRS), CipKeBip, COST Action BM1002, and the EduGlia ITN EU grant (to RZ). We acknowledge the support by the National Institutes of Health (The Eunice Kennedy Shriver National Institute of Child Health and Human Development award HD078678 to VP). AV was supported in part by the Federal Target Program “Research and development in priority areas of the development of the scientific and technological complex of Russia for 2014–2020” of the Ministry of Education and Science of Russia, contract 14.581.21.0016 (Project ID RFMEFI58115X0016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Zorec or Alexei Verkhratsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorec, R., Parpura, V. & Verkhratsky, A. Astroglial Vesicular Trafficking in Neurodegenerative Diseases. Neurochem Res 42, 905–917 (2017). https://doi.org/10.1007/s11064-016-2055-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2055-1

Keywords

Navigation