Skip to main content

Advertisement

Log in

Upregulation of PSMB4 is Associated with the Necroptosis after Spinal Cord Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is one of the most common and severe complications in spine injury. It is difficult to prevent cell necroptosis and promote the survival of residual neurons after SCI. Proteasome beta-4 subunit (PSMB4) is the first proteasomal subunit with oncogenic properties promoting cancer cell survival and tumor growth in vivo, and our previous study showed that PSMB4 is significantly associated with neuronal apoptosis in neuroinflammation. However, PSMB4 function in the necroptosis after SCI is unkown. RIP3, a key regulatory factor of necroptosis, correlates with the induction of necroptosis in various types of cells and signaling pathway. Upregulation of the RIP3 expression may play a role as a novel molecular mechanism in secondary neural tissue damage following SCI. In this study, we established an acute spinal cord contusion injury model in adult rats to investigate the potential role of PSMB4 during the pathological process of SCI. We found PSMB4 expression was significantly up-regulated 3 days after injury by western blot and immunohistochemical staining. Double immunofluorescent staining indicated obvious changes of PSMB4 expression occurred in neurons. Significant up-regulation of PSMB4 expression was observed in Rip3 positive neurons at 3 days after SCI, which indicated that PSMB4 might play a vital role in the regulation of Rip3. Overexpress and knockdown PSMB4 could intervene the RIP3 and Mixed lineage kinase domain-like protein (MLKL) pathway in Tumor necrosis factor-α (TNF-α) induced necroptosis cell model. Based on our experimental data, we boldly conclude that PSMB4 is associated with RIP3 involved necroptosis after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Selvarajah S, Hammond ER, Schneider EB (2015) Trends in traumatic spinal cord injury. JAMA 314(15):1643. doi:10.1001/jama.2015.11194

    Article  PubMed  Google Scholar 

  2. Sawada M, Kato K, Kunieda T, Mikuni N, Miyamoto S, Onoe H, Isa T, Nishimura Y (2015) Function of the nucleus accumbens in motor control during recovery after spinal cord injury. Science 350(6256):98–101. doi:10.1126/science.aab3825

    Article  CAS  PubMed  Google Scholar 

  3. Zhang J, Cui Z, Feng G, Bao G, Xu G, Sun Y, Wang L, Chen J, Jin H, Liu J, Yang L, Li W (2015) RBM5 and p53 expression after rat spinal cord injury: implications for neuronal apoptosis. Int J Biochem Cell Biol 60:43–52. doi:10.1016/j.biocel.2014.12.020

    Article  CAS  PubMed  Google Scholar 

  4. Fan H, Zhang K, Shan L, Kuang F, Chen K, Zhu K, Ma H, Ju G, Wang YZ (2016) Reactive astrocytes undergo M1 microglia/macrohpages-induced necroptosis in spinal cord injury. Molecular Neurodegener 11(1):14. doi:10.1186/s13024-016-0081-8

    Article  Google Scholar 

  5. Liu M, Wu W, Li H, Li S, Huang LT, Yang YQ, Sun Q, Wang CX, Yu Z, Hang CH (2015) Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J Spinal Cord Med 38(6):745–753. doi:10.1179/2045772314Y.0000000224

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu T, Zhao DX, Cui H, Chen L, Bao YH, Wang Y, Jiang JY (2016) Therapeutic hypothermia attenuates tissue damage and cytokine expression after traumatic brain injury by inhibiting necroptosis in the rat. Scientific Rep 6:24547. doi:10.1038/srep24547

    Article  CAS  Google Scholar 

  7. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119. doi:10.1038/nchembio711

    Article  CAS  PubMed  Google Scholar 

  8. You Z, Savitz SI, Yang J, Degterev A, Yuan J, Cuny GD, Moskowitz MA, Whalen MJ (2008) Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab 28(9):1564–1573. doi:10.1038/jcbfm.2008.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135(7):1311–1323. doi:10.1016/j.cell.2008.10.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321. doi:10.1038/nchembio.83

    Article  CAS  PubMed  Google Scholar 

  11. Montgomery SL, Bowers WJ (2012) Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol 7(1):42–59. doi:10.1007/s11481-011-9287-2

    Article  PubMed  Google Scholar 

  12. Liu S, Wang X, Li Y, Xu L, Yu X, Ge L, Li J, Zhu Y, He S (2014) Necroptosis mediates TNF-induced toxicity of hippocampal neurons. Biomed Res Int 2014:290182. doi:10.1155/2014/290182

    PubMed  PubMed Central  Google Scholar 

  13. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120. doi:10.1038/cdd.2011.96

    Article  CAS  PubMed  Google Scholar 

  14. Han J, Zhong CQ, Zhang DW (2011) Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol 12(12):1143–1149. doi:10.1038/ni.2159

    Article  CAS  PubMed  Google Scholar 

  15. Moriwaki K, Chan FK (2013) RIP3: a molecular switch for necrosis and inflammation. Genes Dev 27(15):1640–1649. doi:10.1101/gad.223321.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roychowdhury S, McMullen MR, Pisano SG, Liu X, Nagy LE (2013) Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology 57(5):1773–1783. doi:10.1002/hep.26200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khan N, Lawlor KE, Murphy JM, Vince JE (2014) More to life than death: molecular determinants of necroptotic and non-necroptotic RIP3 kinase signaling. Curr Opin Immunol 26:76–89. doi:10.1016/j.coi.2013.10.017

    Article  CAS  PubMed  Google Scholar 

  18. Kanno H, Ozawa H, Tateda S, Yahata K, Itoi E (2015) Upregulation of the receptor-interacting protein 3 expression and involvement in neural tissue damage after spinal cord injury in mice. BMC Neurosci 16:62. doi:10.1186/s12868-015-0204-0

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sun X, Yin J, Starovasnik MA, Fairbrother WJ, Dixit VM (2002) Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem 277(11):9505–9511. doi:10.1074/jbc.M109488200

    Article  CAS  PubMed  Google Scholar 

  20. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227. doi:10.1016/j.cell.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  21. Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 109(14):5322–5327. doi:10.1073/pnas.1200012109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zapatero A, Morente M, Nieto S, Martin de Vidales C, Lopez C, Adrados M, Arellano R, Artiga MJ, Garcia-Vicente F, Herranz LM, Leaman O (2014) Predictive value of PAK6 and PSMB4 expression in patients with localized prostate cancer treated with dose-escalation radiation therapy and androgen deprivation therapy. Urol Oncol 32(8):1327–1332. doi:10.1016/j.urolonc.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  23. Wong ML, Dong C, Maestre-Mesa J, Licinio J (2008) Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry 13(8):800–812. doi:10.1038/mp.2008.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zheng P, Guo H, Li G, Han S, Luo F, Liu Y (2015) PSMB4 promotes multiple myeloma cell growth by activating NF-kappaB-miR-21 signaling. Biochem Biophys Res Commun 458(2):328–333. doi:10.1016/j.bbrc.2015.01.110

    Article  CAS  PubMed  Google Scholar 

  25. Moriwaki K, Chan FK (2016) Regulation of RIPK3- and RHIM-dependent Necroptosis by the Proteasome. J Biol Chem 291(11):5948–5959. doi:10.1074/jbc.M115.700997

    Article  CAS  PubMed  Google Scholar 

  26. Hirano Y, Kaneko T, Okamoto K, Bai M, Yashiroda H, Furuyama K, Kato K, Tanaka K, Murata S (2008) Dissecting beta-ring assembly pathway of the mammalian 20 S proteasome. EMBO J 27(16):2204–2213. doi:10.1038/emboj.2008.148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murata S, Yashiroda H, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10(2):104–115. doi:10.1038/nrm2630

    Article  CAS  PubMed  Google Scholar 

  28. Lee GY, Haverty PM, Li L, Kljavin NM, Bourgon R, Lee J, Stern H, Modrusan Z, Seshagiri S, Zhang Z, Davis D, Stokoe D, Settleman J, de Sauvage FJ, Neve RM (2014) Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes. Cancer Res 74(11):3114–3126. doi:10.1158/0008-5472.CAN-13-2683

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Jin Z, Du Q, Li R, Yao F, Huang B, Xu N, Xu L, Luo X, Liu X (2012) Analysis of altered proteins related to blast crisis in chronic myeloid leukemia by proteomic study. Int J Lab Hematol 34(3):267–273. doi:10.1111/j.1751-553X.2011.01389.x

    Article  CAS  PubMed  Google Scholar 

  30. Thaker NG, Zhang F, McDonald PR, Shun TY, Lewen MD, Pollack IF, Lazo JS (2009) Identification of survival genes in human glioblastoma cells by small interfering RNA screening. Mol Pharmacol 76(6):1246–1255. doi:10.1124/mol.109.058024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cui F, Wang Y, Wang J, Wei K, Hu J, Liu F, Wang H, Zhao X, Zhang X, Yang X (2006) The up-regulation of proteasome subunits and lysosomal proteases in hepatocellular carcinomas of the HBx gene knockin transgenic mice. Proteomics 6(2):498–504. doi:10.1002/pmic.200500218

    Article  CAS  PubMed  Google Scholar 

  32. Shi J, Liu X, Xu C, Ge J, Ren J, Wang J, Song X, Dai S, Tao W, Lu H (2015) Up-regulation of PSMB4 is associated with neuronal apoptosis after neuroinflammation induced by lipopolysaccharide. J Mol Histol 46(6):457–466. doi:10.1007/s10735-015-9637-0

    Article  CAS  PubMed  Google Scholar 

  33. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21

    Article  CAS  PubMed  Google Scholar 

  34. Obuchowicz E, Kowalski J, Labuzek K, Krysiak R, Pendzich J, Herman ZS (2006) Amitriptyline and nortriptyline inhibit interleukin-1 release by rat mixed glial and microglial cell cultures. Int J Neuropsychopharmacol 9(1):27–35. doi:10.1017/S146114570500547X

    Article  CAS  PubMed  Google Scholar 

  35. Das A, Smith JA, Gibson C, Varma AK, Ray SK, Banik NL (2011) Estrogen receptor agonists and estrogen attenuate TNF-alpha-induced apoptosis in VSC4.1 motoneurons. J Endocrinol 208(2):171–182. doi:10.1677/JOE-10-0338

    Article  CAS  PubMed  Google Scholar 

  36. Oliver Metzig M, Fuchs D, Tagscherer KE, Grone HJ, Schirmacher P, Roth W (2015) Inhibition of caspases primes colon cancer cells for 5-fluorouracil-induced TNF-alpha-dependent necroptosis driven by RIP1 kinase and NF-kappaB. Oncogene. doi:10.1038/onc.2015.398

    PubMed  Google Scholar 

  37. Zhao XM, Chen Z, Zhao JB, Zhang PP, Pu YF, Jiang SH, Hou JJ, Cui YM, Jia XL, Zhang SQ (2016) Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis. Cell Death Dis 7:e2089. doi:10.1038/cddis.2015.390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148(1–2):228–243. doi:10.1016/j.cell.2011.11.030

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Nantong University (Grant Codes: YKC15095) and Spine Surgery Clinical Medical Research Center (Grant Codes: HS2014002). We appreciate the technical assistances from M.M. Fang Liu in Jiangsu Province Key Laboratory of neural regeneration. We thank M.D. Aiguo Shen (Nantong University) for editing the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Cui.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Chunshuai Wu and Jiajia Chen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Chen, J., Liu, Y. et al. Upregulation of PSMB4 is Associated with the Necroptosis after Spinal Cord Injury. Neurochem Res 41, 3103–3112 (2016). https://doi.org/10.1007/s11064-016-2033-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2033-7

Keywords

Navigation