Skip to main content

Advertisement

Log in

Sub-chronic Antipsychotic Drug Administration Reverses the Expression of Neuregulin 1 and ErbB4 in a Cultured MK801-Induced Mouse Primary Hippocampal Neuron or a Neurodevelopmental Schizophrenia Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It has been reported that specific environmental influences during the postpartum period might contribute to the development of schizophrenia (SZ). Administration of MK801 during early development led to persistent brain pathology. Glutamate decarboxylase 1 (GAD67) and parvalbumin (PV), and neuregulin 1 (NRG1)/ErbB4 signaling were closely associated with SZ pathology. We postulated therefore that NMDA receptor antagonists exposure during the postpartum period may be associated with expression dysregulation of some of the SZ candidate proteins. To test this, we used mouse primary hippocampal neurons and neonatal male mice treated with the NMDA receptor antagonist, MK801 at postnatal day 4 (P4) or P7, followed by the treatments of antipsychotic drugs (i.e., olanzapine, risperidone, and haloperidol). The expressions of GAD67, PV, NRG1, and ErbB4 in in vitro and in vivo SZ models were detected with Western blot analysis and immunohistochemistry, respectively. Behavioral tests (locomotion activity, social interaction, novel object recognition and prepulse inhibition) were measured. We found MK801 decreased the expression of GAD67, PV, NRG1 and ErbB4, and induced obvious behavioral alterations, while antipsychotics reversed these alterations. These results suggest that exposure to the NMDA receptor antagonist in early development may lead to long-lasting influence on the expression of specific proteins, such as GAD67, PV, NRG1, and ErbB4. Moreover, our results suggest that rescue of the activation of the NRG1/ErbB4 signaling pathway may be one of the mechanisms by which antipsychotic drugs have an antipsychotic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

SZ:

Schizophrenia

CNS:

The central nervous system

GAD67:

Glutamate decarboxylase 1 (GAD67)

PV:

Parvalbumin

NRG1:

Neuregulin 1

NMDA:

N-methyl-d-aspartate

PPI:

Prepulse inhibition

NORT:

Novel object recognition test

References

  1. Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 349(9064):1498–1504. doi:10.1016/s0140-6736(96)07492-2 (London, England)

    Article  CAS  PubMed  Google Scholar 

  2. Owen MJ, O’Donovan MC, Thapar A, Craddock N (2011) Neurodevelopmental hypothesis of schizophrenia. Br J Psychiatry 198(3):173–175. doi:10.1192/bjp.bp.110.084384

    Article  PubMed  PubMed Central  Google Scholar 

  3. van Os J, Kapur S (2009) Schizophrenia. Lancet 374(9690):635–645. doi:10.1016/S0140-6736(09)60995-8

    Article  PubMed  Google Scholar 

  4. Orlovska S, Pedersen MS, Benros ME, Mortensen PB, Agerbo E, Nordentoft M (2014) Head injury as risk factor for psychiatric disorders: a nationwide register-based follow-up study of 113,906 persons with head injury. Am J Psychiatry 171(4):463–469. doi:10.1176/appi.ajp.2013.13020190

    Article  PubMed  Google Scholar 

  5. Berger GE, Wood S, McGorry PD (2003) Incipient neurovulnerability and neuroprotection in early psychosis. Psychopharmacol Bull 37(2):79–101

    PubMed  Google Scholar 

  6. McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2(1):11–23. doi:10.1038/35049047

    Article  CAS  PubMed  Google Scholar 

  7. Hoftman GD, Volk DW, Bazmi HH, Li S, Sampson AR, Lewis DA (2015) Altered cortical expression of GABA-related genes in schizophrenia: illness progression vs developmental disturbance. Schizophr Bull 41(1):180–191. doi:10.1093/schbul/sbt178

    Article  PubMed  Google Scholar 

  8. Arnold SE, Talbot K, Hahn CG (2005) Neurodevelopment, neuroplasticity, and new genes for schizophrenia. Prog Brain Res 147:319–345. doi:10.1016/s0079-6123(04)47023-x

    Article  CAS  PubMed  Google Scholar 

  9. Glausier JR, Fish KN, Lewis DA (2014) Altered parvalbumin basket cell inputs in the dorsolateral prefrontal cortex of schizophrenia subjects. Mol Psychiatry 19(1):30–36. doi:10.1038/mp.2013.152

    Article  CAS  PubMed  Google Scholar 

  10. Gos T, Myint AM, Schiltz K, Meyer-Lotz G, Dobrowolny H, Busse S, Muller UJ, Mawrin C, Bernstein HG, Bogerts B, Steiner J (2014) Reduced microglial immunoreactivity for endogenous NMDA receptor agonist quinolinic acid in the hippocampus of schizophrenia patients. Brain Behav Immun 41:59–64. doi:10.1016/j.bbi.2014.05.012

    Article  CAS  PubMed  Google Scholar 

  11. Ozdemir H, Ertugrul A, Basar K, Saka E (2012) Differential effects of antipsychotics on hippocampal presynaptic protein expressions and recognition memory in a schizophrenia model in mice. Prog Neuropsychopharmacol Biol Psychiatry 39(1):62–68. doi:10.1016/j.pnpbp.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  12. Kim TW, Kang HS, Park JK, Lee SJ, Baek SB, Kim CJ (2014) Voluntary wheel running ameliorates symptoms of MK-801-induced schizophrenia in mice. Mol Med Rep 10(6):2924–2930. doi:10.3892/mmr.2014.2644

    CAS  PubMed  Google Scholar 

  13. Coleman LG Jr, Jarskog LF, Moy SS, Crews FT (2009) Deficits in adult prefrontal cortex neurons and behavior following early post-natal NMDA antagonist treatment. Pharmacol Biochem Behav 93(3):322–330. doi:10.1016/j.pbb.2009.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jones KS, Corbin JG, Huntsman MM (2014) Neonatal NMDA receptor blockade disrupts spike timing and glutamatergic synapses in fast spiking interneurons in a NMDA receptor hypofunction model of schizophrenia. PLoS One 9(10):e109303. doi:10.1371/journal.pone.0109303

    Article  PubMed  PubMed Central  Google Scholar 

  15. Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S, O’Donovan MC, Owen MJ (2003) Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry 8(5):485–487. doi:10.1038/sj.mp.40013485

    Article  CAS  PubMed  Google Scholar 

  16. Correll CU (2010) From receptor pharmacology to improved outcomes: individualising the selection, dosing, and switching of antipsychotics. Eur Psychiatry 25(Suppl 2):S12–S21. doi:10.1016/s0924-9338(10)71701-6

    Article  PubMed  Google Scholar 

  17. Stefansson H, Steinthorsdottir V, Thorgeirsson TE, Gulcher JR, Stefansson K (2004) Neuregulin 1 and schizophrenia. Ann Med 36(1):62–71

    Article  CAS  PubMed  Google Scholar 

  18. Fischbach GD, Rosen KM (1997) ARIA: a neuromuscular junction neuregulin. Annu Rev Neurosci 20:429–458. doi:10.1146/annurev.neuro.20.1.429

    Article  CAS  PubMed  Google Scholar 

  19. Lemke G (2001) Glial control of neuronal development. Annu Rev Neurosci 24:87–105. doi:10.1146/annurev.neuro.24.1.87

    Article  CAS  PubMed  Google Scholar 

  20. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10(1):40–68. doi:10.1038/sj.mp.4001558 (image 45)

    Article  CAS  PubMed  Google Scholar 

  21. Wakuda T, Iwata K, Iwata Y, Anitha A, Takahashi T, Yamada K, Vasu MM, Matsuzaki H, Suzuki K, Mori N (2015) Perinatal asphyxia alters neuregulin-1 and COMT gene expression in the medial prefrontal cortex in rats. Prog Neuropsychopharmacol Biol Psychiatry 56:149–154. doi:10.1016/j.pnpbp.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  22. Dejaegere T, Serneels L, Schafer MK, Van Biervliet J, Horre K, Depboylu C, Alvarez-Fischer D, Herreman A, Willem M, Haass C, Hoglinger GU, D’Hooge R, De Strooper B (2008) Deficiency of Aph1B/C-γ-secretase disturbs Nrg1 cleavage and sensorimotor gating that can be reversed with antipsychotic treatment. Proc Natl Acad Sci USA 105(28):9775–9780. doi:10.1073/pnas.0800507105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Savonenko AV, Melnikova T, Laird FM, Stewart KA, Price DL, Wong PC (2008) Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proc Natl Acad Sci USA 105(14):5585–5590. doi:10.1073/pnas.0710373105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barros CS, Calabrese B, Chamero P, Roberts AJ, Korzus E, Lloyd K, Stowers L, Mayford M, Halpain S, Muller U (2009) Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc Natl Acad Sci USA 106(11):4507–4512. doi:10.1073/pnas.0900355106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Engl J, Laimer M, Niederwanger A, Kranebitter M, Starzinger M, Pedrini MT, Fleischhacker WW, Patsch JR, Ebenbichler CF (2005) Olanzapine impairs glycogen synthesis and insulin signaling in L6 skeletal muscle cells. Mol Psychiatry 10(12):1089–1096

    Article  CAS  PubMed  Google Scholar 

  26. Türkez H, Toğar B (2010) The genotoxic and oxidative damage potential of olanzapine in vitro. Toxicol Ind Health 26(9):583–588. doi:10.1177/0748233710373090 (Epub 2010 Jun 11)

    Article  PubMed  Google Scholar 

  27. Schmidt AJ, Krieg JC, Clement HW, Hemmeter UM, Schulz E, Vedder H, Heiser P (2010) Effects of quetiapine, risperidone, 9-hydroxyrisperidone and ziprasidone on the survival of human neuronal andimmune cells in vitro. J Psychopharmacol 24(3):349–354. doi:10.1177/0269881108096506

    Article  CAS  PubMed  Google Scholar 

  28. Niu J, Mei F, Li N, Wang H, Li X, Kong J, Xiao L (2010) Haloperidol promotes proliferation but inhibits differentiation in rat oligodendrocyte progenitor cell cultures. Biochem Cell Biol 88(4):611–620. doi:10.1139/O09-178

    Article  CAS  PubMed  Google Scholar 

  29. Mutlu O, Ulak G, Celikyurt IK, Akar FY, Erden F (2011) Effects of olanzapine, sertindole and clozapine on learning and memory in the Morris water maze test in naive and MK-801-treated mice. Pharmacol Biochem Behav 98(3):398–404. doi:10.1016/j.pbb.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  30. Sams-Dodd F (1995) Automation of the social interaction test by a video-tracking system: behavioural effects of repeated phencyclidine treatment. J Neurosci Methods 59(2):157–167

    Article  CAS  PubMed  Google Scholar 

  31. Schneider T, Przewlocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30(1):80–89. doi:10.1038/sj.npp.1300518

    Article  CAS  PubMed  Google Scholar 

  32. Mizoguchi H, Takuma K, Fukakusa A, Ito Y, Nakatani A, Ibi D, Kim HC, Yamada K (2008) Improvement by minocycline of methamphetamine-induced impairment of recognition memory in mice. Psychopharmacology 196(2):233–241. doi:10.1007/s00213-007-0955-0

    Article  CAS  PubMed  Google Scholar 

  33. Gunduz-Bruce H (2009) The acute effects of NMDA antagonism: from the rodent to the human brain. Brain Res Rev 60(2):279–286. doi:10.1016/j.brainresrev.2008.07.006

    Article  CAS  PubMed  Google Scholar 

  34. du Bois TM, Huang XF (2007) Early brain development disruption from NMDA receptor hypofunction: relevance to schizophrenia. Brain Res Rev 53(2):260–270. doi:10.1016/j.brainresrev.2006.09.001

    Article  PubMed  Google Scholar 

  35. Markham JA, Koenig JI (2011) Prenatal stress: role in psychotic and depressive diseases. Psychopharmacology 214(1):89–106. doi:10.1007/s00213-010-2035-0

    Article  CAS  PubMed  Google Scholar 

  36. Light GA, Hsu JL, Hsieh MH, Meyer-Gomes K, Sprock J, Swerdlow NR, Braff DL (2006) Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry 60(11):1231–1240. doi:10.1016/j.biopsych.2006.03.055

    Article  PubMed  Google Scholar 

  37. Zhang ZJ, Reynolds GP (2002) A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 55(1–2):1–10

    Article  PubMed  Google Scholar 

  38. Rudolph U, Mohler H (2014) GABAA receptor subtypes: therapeutic potential in down syndrome, affective disorders, schizophrenia, and autism. Annu Rev Pharmacol Toxicol 54:483–507. doi:10.1146/annurev-pharmtox-011613-135947

    Article  CAS  PubMed  Google Scholar 

  39. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71(4):877–892. doi:10.1086/342734

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fazzari P, Paternain AV, Valiente M, Pla R, Lujan R, Lloyd K, Lerma J, Marin O, Rico B (2010) Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature 464(7293):1376–1380. doi:10.1038/nature08928

    Article  CAS  PubMed  Google Scholar 

  41. Yamada A, Inoue E, Deguchi-Tawarada M, Matsui C, Togawa A, Nakatani T, Ono Y, Takai Y (2013) Necl-2/CADM1 interacts with ErbB4 and regulates its activity in GABAergic neurons. Mol Cell Neurosci 56:234–243. doi:10.1016/j.mcn.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  42. Wen L, Lu YS, Zhu XH, Li XM, Woo RS, Chen YJ, Yin DM, Lai C, Terry AV Jr, Vazdarjanova A, Xiong WC, Mei L (2010) Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci USA 107(3):1211–1216. doi:10.1073/pnas.0910302107

    Article  CAS  PubMed  Google Scholar 

  43. Yin DM, Sun XD, Bean JC, Lin TW, Sathyamurthy A, Xiong WC, Gao TM, Chen YJ, Mei L (2013) Regulation of spine formation by ErbB4 in PV-positive interneurons. J Neurosci 33(49):19295–19303. doi:10.1523/jneurosci.2090-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lang UE, Puls I, Muller DJ, Strutz-Seebohm N, Gallinat J (2007) Molecular mechanisms of schizophrenia. Cell Physiol Biochem 20(6):687–702. doi:10.1159/000110430

    Article  CAS  PubMed  Google Scholar 

  45. Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW, Greene RW (1996) NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 16(6):2034–2043

    CAS  PubMed  Google Scholar 

  46. Law AJ, Lipska BK, Weickert CS, Hyde TM, Straub RE, Hashimoto R, Harrison PJ, Kleinman JE, Weinberger DR (2006) Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease. Proc Natl Acad Sci USA 103(17):6747–6752. doi:10.1073/pnas.0602002103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chong VZ, Thompson M, Beltaifa S, Webster MJ, Law AJ, Weickert CS (2008) Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients. Schizophr Res 100(1–3):270–280. doi:10.1016/j.schres.2007.12.474

    Article  PubMed  PubMed Central  Google Scholar 

  48. Banerjee A, Macdonald ML, Borgmann-Winter KE, Hahn CG (2010) Neuregulin 1-erbB4 pathway in schizophrenia: from genes to an interactome. Brain Res Bull 83(3–4):132–139

    Article  CAS  PubMed  Google Scholar 

  49. Wang XD, Su YA, Guo CM, Yang Y, Si TM (2008) Chronic antipsychotic drug administration alters the expression of neuregulin 1beta, ErbB2, ErbB3, and ErbB4 in the rat prefrontal cortex and hippocampus. Int J Neuropsychopharmacol 11(4):553–561

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81171268).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Aiguo Tang.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Tang, Y., Yang, J. et al. Sub-chronic Antipsychotic Drug Administration Reverses the Expression of Neuregulin 1 and ErbB4 in a Cultured MK801-Induced Mouse Primary Hippocampal Neuron or a Neurodevelopmental Schizophrenia Model. Neurochem Res 41, 2049–2064 (2016). https://doi.org/10.1007/s11064-016-1917-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1917-x

Keywords

Navigation