Skip to main content

Advertisement

Log in

Effect of the Anti-depressant Sertraline, the Novel Anti-seizure Drug Vinpocetine and Several Conventional Antiepileptic Drugs on the Epileptiform EEG Activity Induced by 4-Aminopyridine

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Seizures are accompanied by an exacerbated activation of cerebral ion channels. 4-aminopyridine (4-AP) is a pro-convulsive agent which mechanism of action involves activation of Na+ and Ca2+ channels, and several antiepileptic drugs control seizures by reducing these channels permeability. The antidepressant, sertraline, and the anti-seizure drug vinpocetine are effective inhibitors of cerebral presynaptic Na+ channels. Here the effectiveness of these compounds to prevent the epileptiform EEG activity induced by 4-AP was compared with the effectiveness of seven conventional antiepileptic drugs. For this purpose, EEG recordings before and at three intervals within the next 30 min following 4-AP (2.5 mg/kg, i.p.) were taken in anesthetized animals; and the EEG-highest peak amplitude values (HPAV) calculated. In control animals, the marked increase in the EEG-HPAV observed near 20 min following 4-AP reached its maximum at 30 min. Results show that this epileptiform EEG activity induced by 4-AP is prevented by sertraline and vinpocetine at a dose of 2.5 mg/kg, and by carbamazepine, phenytoin, lamotrigine and oxcarbazepine at a higher dose (25 mg/kg). In contrast, topiramate (25 mg/kg), valproate (100 mg/kg) and levetiracetam (100 mg/kg) failed to prevent the epileptiform EEG activity induced by 4-AP. It is concluded that 4-AP is a useful tool to elicit the mechanism of action of anti-seizure drugs at clinical meaningful doses. The particular efficacy of sertraline and vinpocetine to prevent seizures induced by 4-AP is explained by their high effectiveness to reduce brain presynaptic Na+ and Ca2+ channels permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sitges M, Chiu LM, Guarneros A, Nekrassov V (2007) Effects of carbamazepine, phenytoin, lamotrigine, oxcarbazepine, topiramate and vinpocetine on Na+ channel-mediated release of [3H]glutamate in hippocampal nerve endings. Neuropharmacology 52:598–605

    Article  CAS  PubMed  Google Scholar 

  2. Sitges M, Guarneros A, Nekrassov V (2007) Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of [3H]glutamate: comparison with the Na+ channel-mediated release. Neuropharmacology 53:854–862

    Article  CAS  PubMed  Google Scholar 

  3. Sitges M, Sanchez-Tafolla BM, Chiu LM, Aldana BI, Guarneros A (2011) Vinpocetine inhibits glutamate release induced by the convulsive agent 4-aminopyridine more potently than several antiepileptic drugs. Epilepsy Res 96:257–266

    Article  CAS  PubMed  Google Scholar 

  4. Yamaguchi S, Rogawski MA (1992) Effects of anticonvulsant drugs on 4-aminopyridine-induced seizures in mice. Epilepsy Res 11:9–16

    Article  CAS  PubMed  Google Scholar 

  5. Sitges M, Nekrassov V (2004) Vinpocetine prevents 4-aminopyridine-induced changes in the EEG, the auditory brainstem responses and hearing. Clin Neurophysiol 115:2711–2717

    Article  CAS  PubMed  Google Scholar 

  6. Mora G, Tapia R (2005) Effects of retigabine on the neurodegeneration and extracellular glutamate changes induced by 4-aminopyridine in rat hippocampus in vivo. Neurochem Res 30:1557–1565

    Article  CAS  PubMed  Google Scholar 

  7. Nekrassov V, Sitges M (2003) Effects of pentylenetetrazole and 4-aminopyridine on the auditory brainstem response (ABR) and on the hearing sensitivity in the guinea pig in vivo. Brain Res 53:245–254

    Google Scholar 

  8. Nekrassov V, Sitges M (2008) Comparison of acute, chronic and post-treatment effects of carbamazepine and vinpocetine on hearing loss and seizures induced by 4-aminopyridine. Clin Neurophysiol 119:2608–2614

    Article  CAS  PubMed  Google Scholar 

  9. Sitges M, Aldana BI, Gomez CD, Nekrassov V (2012) The antidepressant sertraline prevents the behavioral and EEG changes induced in two animal models of seizures. Epilepsy Behav 25:511–516

    Article  PubMed  Google Scholar 

  10. Tibbs GR, Barrie AP, Van Mieghem FJE, McMahon HT, Nicholls DG (1989) Repetitive action potentials in isolated nerve terminals in the presence of 4-aminopyridine: effects on cytosolic free Ca2+ and glutamate release. J Neurochem 53:1693–1699

    Article  CAS  PubMed  Google Scholar 

  11. Heemskerk FM, Schrama LH, Ghijsen WE, De Graan PN, Lopes da Silva FH, Gispen WH (1991) Presynaptic mechanism of action of 4-aminopyridine: changes in intracellular free Ca2+ concentration and its relationship to B-50 (GAP-43) phosphorylation. J Neurochem 156:1827–1835

    Article  Google Scholar 

  12. Galvan E, Sitges M (2004) Characterization of the participation of sodium channels on the rise in Na+ induced by 4-aminopyridine (4-AP) in synaptosomes. Neurochem Res 29:347–355

    Article  CAS  PubMed  Google Scholar 

  13. Sitges M, Galvan E, Nekrassov V (2005) Vinpocetine blockade of sodium channels inhibits the rise in sodium and calcium induced by 4-aminopyridine in synaptosomes. Neurochem Int 46:533–540

    Article  CAS  PubMed  Google Scholar 

  14. Gilliam F, Hecimovic H, Sheline Y (2003) Psychiatric comorbidity, health and function in epilepsy. Epilepsy Behav Suppl 4:S26–S30

    Article  Google Scholar 

  15. Lothe A, Didelot A, Hammers A, Costes M, Saoud M, Gilliam F, Ryvlin P (2008) Comorbidity between temporal lobe epilepsy and depression: a [18F]MPPF PET study. Brain 131:2765–2782

    Article  CAS  PubMed  Google Scholar 

  16. Kanner AM (2008) Depression in epilepsy: a complex relation with unexpected consequences. Curr Opin Neurol 21:190–194

    Article  PubMed  Google Scholar 

  17. Kanner AM, Trimble M, Schmitz B (2010) Postictal affective episodes. Epilepsy Behav 19:156–158

    Article  PubMed  Google Scholar 

  18. Noe KH, Locke DE, Sirven JI (2011) Treatment of depression in patients with epilepsy. Curr Treat Options Neurol 13:371–379

    Article  PubMed  Google Scholar 

  19. Danzer SC (2011) Depression, stress, epilepsy and adult neurogenesis. Exp Neurol 233:22–32

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stevanovic D, Jancic J, Lakic A (2011) The impact of depression and anxiety disorder symptoms on the health-related quality of life of children and adolescents with epilepsy. Epilepsia 52:e75–e78

    Article  PubMed  Google Scholar 

  21. Hecimovic H, Santos JM, Carter J, Attarian HP, Fessier AJ, Vahle V, Gilliam F (2012) Depression but not seizure factors or quality of life predicts suicidality in epilepsy. Epilepsy Behav 24:426–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kanner AM, Schachter SC, Barry JJ, Hersdorffer DC, Mula M, Trimble M, Herman B, Ettinger AE, Dunn D, Caplan R, Ryvlin P, Gilliam F (2012) Depression and epilepsy: epidemiologic and Neurobiologic perspectives that may explain their high comorbid occurrence. Epilepsy Behav 24:156–168

    Article  PubMed  Google Scholar 

  23. Mula M (2012) Epilepsy: bidirectional link between epilepsy and psychiatric disorders. Nat Rev Neurol 8:252–253

    Article  PubMed  Google Scholar 

  24. Sheehan DV, Kamijima K (2009) An evidence-based review of the clinical use of sertraline in mood and anxiety disorders. Int Clin Psychopharmacol 24:43–60

    Article  PubMed  Google Scholar 

  25. Aldana BI, Sitges M (2012) Sertraline inhibits pre-synaptic Na+ channel-mediated responses in hippocampus-isolated nerve endings. J Neurochem 121:197–205

    Article  CAS  PubMed  Google Scholar 

  26. Vohora D (2010) Recent advances in adjunctive therapy for epilepsy: focus on sodium channel blockers as third-generation antiepileptic drugs. Drugs Today 46:265–277

    Article  CAS  PubMed  Google Scholar 

  27. Tretter L, Adam-Vizi V (1998) The neuroprotective drug vinpocetine prevents veratridine-induced [Na+]i and [Ca2+]i rise in synaptosomes. NeuroReport 9:1849–1853

    Article  CAS  PubMed  Google Scholar 

  28. Sitges M, Nekrassov V (1999) Vinpocetine selectively inhibits neurotransmitter release triggered by sodium channel activation. Neurochem Res 24:1585–1591

    Article  CAS  PubMed  Google Scholar 

  29. Sitges M, Chiu LM, Nekrassov V (2006) Single and combined effects of carbamazepine and vinpocetine on depolarization-induced changes in Na+, Ca2+ and glutamate release in hippocampal isolated nerve endings. Neurochem Int 49:55–61

    Article  CAS  PubMed  Google Scholar 

  30. Nekrassov V, Sitges M (2004) Vinpocetine inhibits the epileptic cortical activity and auditory alterations induced by pentylenetetrazole in the guinea pig in vivo. Epilepsy Res 60:63–71

    Article  CAS  PubMed  Google Scholar 

  31. Tremaine LM, Welch WM, Ronfeld RA (1989) Metabolism and disposition of the 5-hydroxytryptamine uptake blocker sertraline in the rat and dog. Drug Metab Dispos 17:542–550

    CAS  PubMed  Google Scholar 

  32. Sitges M, Garza-Morales S (2014) Effectiveness of a 12 h extended release formula of ethyl-apovincaminic acid in the control of seizures in patients with refractory epilepsy. Epilepsia 55(Suppl. 2):92–93

    Google Scholar 

  33. Reagan-Shaw S, Nihal M, Nihal A (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  CAS  PubMed  Google Scholar 

  34. Gómez CD, Buijs RM, Sitges M (2014) The anti-seizure drugs vinpocetine and carbamazepine, but not valproic acid, reduce inflammatory IL-1β and TNF-α expression in rat hippocampus. J Neurochem 130:770–779

    Article  PubMed  Google Scholar 

  35. Schmidt D, Schachter S (2014) Drug treatment of epilepsy in adults. BMJ; 348-g2546

  36. Bukanova J, Solntseva E, Skrebitsky V (2002) Selective suppression of the slow-inactivating potassium currents by nootropics in molluscan neurons. Int J Neuropsychopharmacol 5:229–237

    Article  CAS  PubMed  Google Scholar 

  37. Macdonald RL, Barker JL (1977) Pentylenetetrazol and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurones. Nature 267:720–721

    Article  CAS  PubMed  Google Scholar 

  38. Löscher W (1999) Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Prog Neurobiol 58:31–59

    Article  PubMed  Google Scholar 

  39. Löscher W (2002) Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 16:669–694

    Article  PubMed  Google Scholar 

  40. Cramer CL, Stagnitto ML, Knowles MA, Palmer GC (1994) Kainic acid and 4-aminopyridine seizure models in mice: evaluation of efficacy of anti-epileptic agents and calcium antagonists. Life Sci 54:271–275

    Article  Google Scholar 

  41. Martín ED, Pozo MA (2003) Valproate suppresses status epilepticus induced by 4-aminopyridine in CA1 hippocampus region. Epilepsia 44:1375–1379

    Article  PubMed  Google Scholar 

  42. Nekrassov V, Sitges M (2006) Additive effects of antiepileptic drugs and pentylenetetrazole on hearing. Neurosci Lett 406:276–280

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Araceli Guarneros and Luz Maria Chiu for technical assistance. Funding for this study was provided in part by Programa de Apoyos para la Superación Académica de la UNAM (PASPA). All experiments were conducted in compliance with the ARRIVE guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Sitges.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitges, M., Aldana, B.I. & Reed, R.C. Effect of the Anti-depressant Sertraline, the Novel Anti-seizure Drug Vinpocetine and Several Conventional Antiepileptic Drugs on the Epileptiform EEG Activity Induced by 4-Aminopyridine. Neurochem Res 41, 1365–1374 (2016). https://doi.org/10.1007/s11064-016-1840-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1840-1

Keywords

Navigation