Skip to main content

Advertisement

Log in

The Emerging Therapeutic Role of NGF in Alzheimer’s Disease

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common type of neurodegenerative dementia that affects the elderly population. Nerve growth factor (NGF) contributes to the survival, regeneration and death of neurons during aging and in neurodegenerative diseases. Recently, research has shown that NGF is related to the pathology, mechanisms and symptoms of AD. Therefore, there is a need to summarize the new advancements in NGF research and its potential therapeutic implications in AD. In this review, we will focus on NGF distribution, production, and function; the interaction of Aβ and NGF; and the effect of different therapy methods on AD. In summary, we hope to describe the experimental and clinical data demonstrating the important roles of NGF for AD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Wang YJ, Valadares D, Sun Y, Wang X, Zhong JH, Liu XH, Majd S, Chen L, Gao CY, Chen S, Lim Y, Pollard A, Salegio EA, Gai WP, Yang M, Zhou XF (2010) Effects of ProNGF on neuronal viability, neurite growth and amyloid-β metabolism. Neurotox Res 17:257–267

    Article  PubMed  Google Scholar 

  2. Ayton S, Lei P, Bush AI (2015) Biometals and their therapeutic implications in Alzheimer’s disease. Neurotherapeutics 12:109–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lad SP, Neet KE, Mufson EJ (2003) Nerve growth factor: structure, function and therapeutic implications for Alzheimer’s disease. Curr Drug Targets CNS Neurol Disord 2:315–334

    Article  CAS  PubMed  Google Scholar 

  4. Cohen S, Levi-Montalcini R, Hamburger V (1954) A nerve growth-stimulating factor isolated from sarcom as 37 and 180. Proc Natl Acad Sci USA 40:1014–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Levi-Montalcini R, Hamburger V (1951) Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool 116:321–361

    Article  CAS  PubMed  Google Scholar 

  6. Fahnestock M, Yu G, Coughlin MD (2004) ProNGF: a neurotrophic or an apoptotic molecule? Prog Brain Res 146:101–110

    Article  CAS  PubMed  Google Scholar 

  7. Hempstead BL (2009) Commentary: regulating ProNGF action: multiple targets for therapeutic intervention. Neurotox Res 16:255–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    Article  CAS  PubMed  Google Scholar 

  9. Cuello AC, Bruno MA, Allard S, Leon W, Iulita MF (2010) Cholinergic involvement in Alzheimer’s disease. A link with NGF maturation and degradation. J Mol Neurosci 40:230–235

    Article  CAS  PubMed  Google Scholar 

  10. Iulita MF, Cuello AC (2014) Nerve growth factor metabolic dysfunction in Alzheimer’s disease and Down syndrome. Trends Pharmacol Sci 35:338–348

    Article  CAS  PubMed  Google Scholar 

  11. Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, Jacobsen C, Kliemannel M, Schwarz E, Willnow TE, Hempstead BL, Petersen CM (2004) Sortilin is essential for ProNGF-induced neuronal cell death. Nature 427:843–848

    Article  CAS  PubMed  Google Scholar 

  12. Capsoni S, Giannotta S, Cattaneo A (2002) β-Amyloid plaques in a model for sporadic Alzheimer’s disease based on transgenic anti-nerve growth factor antibodies. Mol Cell Neurosci 21:15–28

    Article  CAS  PubMed  Google Scholar 

  13. Yuen EC, Howe CL, Li Y, Holtzman DM, Mobley WC (1996) Nerve growth factor and the neurotrophic factor hypothesis. Brain Dev 18:362–368

    Article  CAS  PubMed  Google Scholar 

  14. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138:155–175

    Article  CAS  PubMed  Google Scholar 

  15. Cirulli F, Alleva E, Antonelli A, Aloe L (2000) NGF expression in the developing rat brain: effects of maternal separation. Dev Brain Res 123:129–134

    Article  CAS  Google Scholar 

  16. Woodhall E, West AK, Chuah MI (2001) Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Mol Brain Res 88:203–213

    Article  CAS  PubMed  Google Scholar 

  17. Lu B, Yokoyama M, Dreyfus CF, Black I (1991) NGF gene expression in actively growing brain glia. J Neurosci 11:318–326

    CAS  PubMed  Google Scholar 

  18. Heese K, Fiebich BL, Bauer J, Otten U (1997) Nerve growth factor (NGF) expression in rat microglia is induced by adenosine A 2a-receptors. Neurosci Lett 231:83–86

    Article  CAS  PubMed  Google Scholar 

  19. Zafra F, Lindholm D, Castren E, Hartikka J, Thoenen H (1992) Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci 12:4793–4799

    CAS  PubMed  Google Scholar 

  20. Du Y, Dreyfus CF (2002) Oligodendrocytes as providers of growth factors. J Neurosci Res 68:647–654

    Article  CAS  PubMed  Google Scholar 

  21. Byravan S, Foster LM, Phan T, Verity AN, Campagnoni AT (1994) Murine oligodendroglial cells express nerve growth factor. Proc Natl Acad Sci USA 91:8812–8816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Freund V, Pons F, Joly V, Mathieu E, Martinet N, Frossard N (2002) Upregulation of nerve growth factor expression by human airway smooth muscle cells in inflammatory conditions. Eur Respir J 20:458–463

    Article  CAS  PubMed  Google Scholar 

  23. Heumann R, Lindholm D, Bandtlow C, Meyer M, Radeke MJ, Misko TP, Shooter E, Thoenen H (1987) Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Natl Acad Sci USA 84:8735–8739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taniuchi M, Clark HB, Schweitzer JB, Johnson E (1988) Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves: ultrastructural location, suppression by axonal contact, and binding properties. J Neurosci 8:664–681

    CAS  PubMed  Google Scholar 

  25. Kawamoto K, Aoki J, Tanaka A, Itakura A, Hosono H, Arai H, Kiso Y, Matsuda H (2002) Nerve growth factor activates mast cells through the collaborative interaction with lysophosphatidylserine expressed on the membrane surface of activated platelets. J Immunol 168:6412–6419

    Article  CAS  PubMed  Google Scholar 

  26. Aloe L, Rocco ML (2015) NGF and therapeutic prospective: what have we learned from the NGF transgenic models? Ann Ist Super Sanita 51:5–10

    CAS  PubMed  Google Scholar 

  27. Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11:272–280

    Article  CAS  PubMed  Google Scholar 

  28. Fukuda Y, Fukui T, Hikichi C, Ishikawa T, Murate K, Adachi T, Imai H, Fukuhara K, Ueda A, Kaplan AP (2015) Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res 1596:13–21

    Article  CAS  PubMed  Google Scholar 

  29. Gu G, Zhang W, Li M, Ni J, Wang P (2015) Transplantation of NSC-derived cholinergic neuron-like cells improves cognitive function in APP/PS1 transgenic mice. Neuroscience 291:81–92

    Article  CAS  PubMed  Google Scholar 

  30. Ruberti F, Capsoni S, Comparini A, Di Daniel E, Franzot J, Gonfloni S, Rossi G, Berardi N, Cattaneo A (2000) Phenotypic knockout of nerve growth factor in adult transgenic mice reveals severe deficits in basal forebrain cholinergic neurons, cell death in the spleen, and skeletal muscle dystrophy. J Neurosci 20:2589–2601

    CAS  PubMed  Google Scholar 

  31. Zhang YW, Chen Y, Liu Y, Zhao Y, Liao FF, Xu H (2013) APP regulates NGF receptor trafficking and NGF-mediated neuronal differentiation and survival. PLoS One 8:e80571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arevalo MÁ, Roldan PM, Chacón PJ, Rodríguez-Tebar A (2009) Amyloid β serves as an NGF-like neurotrophic factor or acts as a NGF antagonist depending on its concentration. J Neurochem 111:1425–1433

    Article  CAS  PubMed  Google Scholar 

  33. Xu C-J, Wang J-L, Jin W-L (2015) The neural stem cell microenvironment: focusing on axon guidance molecules and myelin-associated factors. J Mol Neurosci 56:887–897. doi:10.1007/s12031-015-0538-1

  34. Wang Y-J, Wang X, Lu J-J, Li Q-X, Gao C-Y, Liu X-H, Sun Y, Yang M, Lim Y, Evin G (2011) p75NTR regulates Aβ deposition by increasing Aβ production but inhibiting Aβ aggregation with its extracellular domain. J Neurosci 31:2292–2304

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y-W, Chen Y, Liu Y, Zhao Y, Liao F-F, Xu H (2013) APP regulates NGF receptor trafficking and NGF-mediated neuronal differentiation and survival. PLoS One 8:e80571. doi:10.1371/journal.pone.0080571

  36. Cuello A, Ferretti M, Iulita M (2012) Preplaque (‘preclinical’) Aβ-induced inflammation and nerve growth factor deregulation in transgenic models of Alzheimer’s disease-like amyloid pathology. Neurodegener Dis 10:104–107. doi:10.1159/000333339

    Article  CAS  PubMed  Google Scholar 

  37. Bruno MA, Leon WC, Fragoso G, Mushynski WE, Almazan G, Cuello AC (2009) Amyloid β-induced nerve growth factor dysmetabolism in Alzheimer disease. J Neuropathol Exp Neurol 68:857–869

    Article  CAS  PubMed  Google Scholar 

  38. Wakabayashi M, Matsuzaki K (2007) Formation of amyloids by Aβ-(1–42) on NGF-differentiated PC12 cells: roles of gangliosides and cholesterol. J Mol Biol 371:924–933

    Article  CAS  PubMed  Google Scholar 

  39. Matrone C, Ciotti MT, Mercanti D, Marolda R, Calissano P (2008) NGF and BDNF signaling control amyloidogenic route and Aβ production in hippocampal neurons. Proc Natl Acad Sci USA 105:13139–13144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marei HE, Farag A, Althani A, Afifi N, Abd-Elmaksoud A, Lashen S, Rezk S, Pallini R, Casalbore P, Cenciarelli C (2015) Human olfactory bulb neural stem cells expressing hNGF restore cognitive deficit in Alzheimer’s disease rat model. J Cell Physiol 230:116–130

    Article  CAS  PubMed  Google Scholar 

  41. Yang C, Liu Y, Ni X, Li N, Zhang B, Fang X (2014) Enhancement of the nonamyloidogenic pathway by exogenous NGF in an Alzheimer transgenic mouse model. Neuropeptides 48:233–238

    Article  CAS  PubMed  Google Scholar 

  42. Xu CJ, Xu L, Huang LD, Li Y, Yu PP, Hang Q, Xu XM, Lu PH (2011) Combined NgR vaccination and neural stem cell transplantation promote functional recovery after spinal cord injury in adult rats. Neuropathol Appl Neurobiol 37:135–155

    Article  CAS  PubMed  Google Scholar 

  43. Borlongan CV (2012) Recent preclinical evidence advancing cell therapy for Alzheimer’s disease. Exp Neurol 237:142–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heese K, Low JW, Inoue N (2006) Nerve growth factor, neural stem cells and Alzheimer’s disease. Neurosignals 15:1–12

    Article  CAS  PubMed  Google Scholar 

  45. Yu J, Zhang X, Liu C, Meng Y, Han J (2006) Effect of acupuncture treatment on vascular dementia. Neurol Res 28:97–103

    Article  CAS  PubMed  Google Scholar 

  46. Chen J-H, Liang J, Wang G-B, Han J-S, Cui C-L (2005) Repeated 2 Hz peripheral electrical stimulations suppress morphine-induced CPP and improve spatial memory ability in rats. Exp Neurol 194:550–556

    Article  CAS  PubMed  Google Scholar 

  47. Lee M, Shin BC, Ernst E (2009) Acupuncture for Alzheimer’s disease: a systematic review. Int J Clin Pract 63:874–879

    Article  CAS  PubMed  Google Scholar 

  48. Guo H-D, Tian J-X, Zhu J, Li L, Sun K, Shao S-J, Cui G-H (2015) Electroacupuncture suppressed neuronal apoptosis and improved cognitive impairment in the AD model rats possibly via downregulation of notch signaling pathway. Evid Based Complement Alternat Med 2015:393569. doi:10.1155/2015/393569

  49. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  CAS  PubMed  Google Scholar 

  50. Lehéricy S, Hirsch ÉC, Cervera-Piérot P, Hersh LB, Bakchine S, Piette F, Duyckaerts C, Hauw JJ, Javoy-Agid F, Agid Y (1993) Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer’s disease. J Comp Neurol 330:15–31

    Article  PubMed  Google Scholar 

  51. Hou X-Q, Zhang L, Yang C, Rong C-P, He W-Q, Zhang C-X, Li S, Su R-Y, Chang X, Qin J-H (2015) Alleviating effects of Bushen–Yizhi formula on ibotenic acid-induced cholinergic impairments in rat. Rejuvenation Res 18:111–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang R, Yan H (2006) Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 27:1–26

    Article  PubMed  Google Scholar 

  53. Moon M, Kim HG, Choi JG, Oh H, Lee PK, Ha SK, Kim SY, Park Y, Huh Y, Oh MS (2014) 6-Shogaol, an active constituent of ginger, attenuates neuroinflammation and cognitive deficits in animal models of dementia. Biochem Biophys Res Commun 449:8–13

    Article  CAS  PubMed  Google Scholar 

  54. Gao J, Inagaki Y, Li X, Kokudo N, Tang W (2013) Research progress on natural products from traditional Chinese medicine in treatment of Alzheimer’s disease. Drug Discov Ther 7:46–57

    CAS  PubMed  Google Scholar 

  55. Geula C, Mesulam M-M (1995) Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis Assoc Disord 9:23–28

    Article  PubMed  Google Scholar 

  56. Weinstock M, Kirschbaum-Slager N, Lazarovici P, Bejar C, Youdim MB, Shoham S (2001) Neuroprotective effects of novel cholinesterase inhibitors derived from rasagiline as potential anti-Alzheimer drugs. Ann N Y Acad Sci 939:148–161

    Article  CAS  PubMed  Google Scholar 

  57. Liston DR, Nielsen JA, Villalobos A, Chapin D, Jones SB, Hubbard ST, Shalaby IA, Ramirez A, Nason D, White WF (2004) Pharmacology of selective acetylcholinesterase inhibitors: implications for use in Alzheimer’s disease. Eur J Pharmacol 486:9–17

    Article  CAS  PubMed  Google Scholar 

  58. Capsoni S, Giannotta S, Stebel M, Garcia AA, De Rosa R, Villetti G, Imbimbo BP, Pietra C, Cattaneo A (2004) Ganstigmine and donepezil improve neurodegeneration in AD11 antinerve growth factor transgenic mice. Am J Alzheimers Dis Other Dement 19:153–160

    Article  Google Scholar 

  59. Aboukhatwa M, Dosanjh L, Luo Y (2010) Antidepressants are a rational complementary therapy for the treatment of Alzheimer’s disease. Mol Neurodegener 5:10. doi:10.1186/1750-1326-5-10

  60. Russo-Neustadt A, Beard RC, Cotman CW (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21:679–682

    Article  CAS  PubMed  Google Scholar 

  61. Lang UE, Hellweg R, Kalus P, Bajbouj M, Lenzen KP, Sander T, Kunz D, Gallinat J (2005) Association of a functional BDNF polymorphism and anxiety-related personality traits. Psychopharmacology 180:95–99

    Article  CAS  PubMed  Google Scholar 

  62. Akkad DA, Kruse N, Arning L, Gold R, Epplen JT (2008) Genomic NGFB variation and multiple sclerosis in a case control study. BMC Med Genet 9:107

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nagata T, Shinagawa S, Nukariya K, Nakayama R, Nakayama K, Yamada H (2011) Association between nerve growth factor gene polymorphism and executive dysfunction in Japanese patients with early-stage Alzheimer’s disease and amnestic mild cognitive impairment. Dement Geriatr Cogn Disord 32:379–386

    Article  CAS  PubMed  Google Scholar 

  64. Di Maria E, Giorgio E, Uliana V, Bonvicini C, Faravelli F, Cammarata S, Novello MC, Galimberti D, Scarpini E, Zanetti O (2012) Possible influence of a non-synonymous polymorphism located in the NGF precursor on susceptibility to late-onset Alzheimer’s disease and mild cognitive impairment. J Alzheimers Dis 29:699

    PubMed  Google Scholar 

  65. Alberts MJ, Pericak-Vance MA, Royal V, Bebout J, Gaskell P, Thomas J, Hung WY, Clark C, Earl N, Roses AD (1991) Genetic linkage analysis of nerve growth factor (β) in familial Alzheimer’s disease. Ann Neurol 30:216–219

    Article  CAS  PubMed  Google Scholar 

  66. Qosa H, Mohamed LA, Batarseh YS, Alqahtani S, Ibrahim B, LeVine H, Keller JN, Kaddoumi A (2015) Extra-virgin olive oil attenuates amyloid-β and tau pathologies in the brains of TgSwDI mice. J Nutr Biochem 26:1479–1490. doi:10.1016/j.jnutbio.2015.07.022

  67. Yu J, Gattoni-Celli M, Zhu H, Bhat NR, Sambamurti K, Gattoni-Celli S, Kindy MS (2011) Vitamin D3-enriched diet correlates with a decrease of amyloid plaques in the brain of AβPP transgenic mice. J Alzheimers Dis 25:295–307. doi:10.3233/JAD-2011-101986

    CAS  PubMed  Google Scholar 

  68. Lee J, Duan W, Long JM, Ingram DK, Mattson MP (2000) Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci 15:99–108

    Article  CAS  PubMed  Google Scholar 

  69. Duan W, Lee J, Guo Z, Mattson MP (2001) Dietary restriction stimulates BDNF production in the brain and thereby protects neurons against excitotoxic injury. J Mol Neurosci 16:1–12

    Article  CAS  PubMed  Google Scholar 

  70. Yao J, Chen S, Mao Z, Cadenas E, Brinton RD (2011) 2-Deoxy-d-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer’s disease. PLoS One 6:e21788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Um H-S, Kang E-B, Koo J-H, Kim H-T, Kim E-J, Yang C-H, An G-Y, Cho I-H, Cho J-Y (2011) Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer’s disease. Neurosci Res 69:161–173

    Article  CAS  PubMed  Google Scholar 

  72. Berardi N, Braschi C, Capsoni S, Cattaneo A, Maffei L (2007) Environmental enrichment delays the onset of memory deficits and reduces neuropathological hallmarks in a mouse model of Alzheimer-like neurodegeneration. J Alzheimers Dis 11:359–370

    CAS  PubMed  Google Scholar 

  73. Zhang Z, Liu X, Schroeder JP, Chan C-B, Song M, Yu SP, Weinshenker D, Ye K (2014) 7,8-Dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 39:638–650

    Article  PubMed  PubMed Central  Google Scholar 

  74. Maliartchouk S, Feng Y, Ivanisevic L, Debeir T, Cuello AC, Burgess K, Saragovi HU (2000) A designed peptidomimetic agonistic ligand of TrkA nerve growth factor receptors. Mol Pharmacol 57:385–391

    CAS  PubMed  Google Scholar 

  75. Scarpi D, Cirelli D, Matrone C, Castronovo G, Rosini P, Occhiato E, Romano F, Bartali L, Clemente A, Bottegoni G (2012) Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity. Cell Death Dis 3:e339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Massa SM, Xie Y, Longo FM (2003) Alzheimer’s therapeutics. J Mol Neurosci 20:323–326

    Article  CAS  PubMed  Google Scholar 

  77. Tuszynski MH, Thal L, Pay M, Salmon DP, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555

    Article  CAS  PubMed  Google Scholar 

  78. Wahlberg LU, Lind G, Almqvist PM, Kusk P, Tornøe J, Juliusson B, Söderman M, Selldén E, Seiger Å, Eriksdotter-Jönhagen M (2012) Targeted delivery of nerve growth factor via encapsulated cell biodelivery in Alzheimer disease: a technology platform for restorative neurosurgery: clinical article. J Neurosurg 117:340–347

    Article  PubMed  Google Scholar 

  79. Rafii MS, Baumann TL, Bakay RA, Ostrove JM, Siffert J, Fleisher AS, Herzog CD, Barba D, Pay M, Salmon DP (2014) A phase 1 study of stereotactic gene delivery of AAV2-NGF for Alzheimer’s disease. Alzheimers Dement 10:571–581

    Article  PubMed  Google Scholar 

  80. Friden PM, Walus LR, Watson P, Kozarich J, Backman C, Bergman H, Hoffer B, Bloom F, Granholm A (1993) Blood–brain barrier penetration and in vivo activity of an NGF conjugate. Science 259:373–377

    Article  CAS  PubMed  Google Scholar 

  81. Kastin AJ, Pan W, Maness LM, Banks WA (1999) Peptides crossing the blood–brain barrier: some unusual observations. Brain Res 848:96–100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by the Zhejiang Provincial Natural Science Foundation of China (LY13H090007) and the National Natural Science Foundation of China (No. 31171033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao-Jin Xu or Wei-Lin Jin.

Ethics declarations

Conflict of interest

We declare that we did not receive financial support or maintain relationships that may have posed a conflict of interest.

Additional information

Chao-jin Xu and Jun-Ling Wang have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, CJ., Wang, JL. & Jin, WL. The Emerging Therapeutic Role of NGF in Alzheimer’s Disease. Neurochem Res 41, 1211–1218 (2016). https://doi.org/10.1007/s11064-016-1829-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1829-9

Keywords

Navigation