Skip to main content

Advertisement

Log in

Differential Expression of AQP1 and AQP4 in Avascular Chick Retina Exposed to Moderate Light of Variable Photoperiods

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Aquaporins (AQPs) are integral membrane proteins which maintain cellular water and ion homeostasis. Alterations in AQP expression have been reported in rod-dominated rodent retinas exposed to light. In rodents and also in birds, light of moderate intensities (700–2000 lux) damages the retina, though detailed changes were not examined in birds. The aim of our study was to see if light affects cone dominated retinas, which would be reflected in expression levels of AQPs. We examined AQP1 and AQP4 expressions in chick retina exposed to 2000 lux under 12 h light:12 h dark (12L:12D; normal photoperiod), 18L:6D (prolonged photoperiod) and 24L:0D (constant light). Additionally, morphological changes, apoptosis (by TUNEL) and levels of glutamate and GFAP (a marker of injury) in the retina were examined to correlate these with AQP expressions. Constant light caused damage in outer and inner nuclear layer (ONL, INL) and ganglion cell layer (GCL). Also, there were associated increases in GFAP and glutamate levels in retinal extracts. In normal photoperiod, AQP1 was expressed in GCL, outer part of INL and photoreceptor inner segments of. AQP4 was additionally expressed in nerve fiber layer. Immunohistochemistry and Western blotting revealed over all decreased AQP1 and AQP4 expression in constant light condition compared to those in other two groups. The elevated GFAP and glutamate levels might be involved in the reduction of AQPs in constant light group. Such decreases in AQP expressions are perhaps linked with retinal cell damage seen in constant light condition, while their relatively enhanced expression in two other conditions may help in maintaining a normal retinal architecture, indicating their neuroprotective potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Agre P, Bonhivers M, Borgnia MJ (1998) The aquaporins, blueprints for cellular plumbing systems. J Biol Chem 273:14659–14662

    Article  CAS  PubMed  Google Scholar 

  2. Verkman AS (2003) Role of aquaporin water channels in eye function. Exp Eye Res 76:137–143

    Article  CAS  PubMed  Google Scholar 

  3. Farjo R, Peterson WM, Naash MI (2008) Expression profiling after retinal detachment and reattachment: a possible role for aquaporin-0. Invest Ophthalmol Vis Sci 49:511–521

    Article  PubMed  PubMed Central  Google Scholar 

  4. Qin Y, Fan J, Ye X, Xu G, Liu W, Da C (2009) High salt loading alters the expression and localization of glial aquaporins in rat retina. Exp Eye Res 89:88–94

    Article  CAS  PubMed  Google Scholar 

  5. Kim IB, Lee FJ, Oh SJ, Park CB, Pow DV, Chun MH (2002) Light and electron microscopic analysis of aquaporin 1-like-immunoreactive amacrine cells in the rat retina. J Comp Neurol 452:178–191

    Article  PubMed  Google Scholar 

  6. Patil RV, Saito I, Yang X, Wax MB (1997) Expression of aquaporins in the rat ocular tissue. Exp Eye Res 64:203–209

    Article  CAS  PubMed  Google Scholar 

  7. Hamann S, Zeuthen T, La Cour M, Nagelhus EA, Ottersen OP, Agre P, Nielsen S (1998) Aquaporins in complex tissues: distribution of aquaporins 1-5 in human and rat eye. Am J Physiol 274:1332–1345

    Google Scholar 

  8. Nagelhus EA, Veruki ML, Torp R, Haug FM, Laake JH, Nielsen S, Agre P, Ottersen OP (1998) Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Müller cells and fibrous astrocytes. J Neurosci 18:2506–2519

    CAS  PubMed  Google Scholar 

  9. Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129:905–913

    Article  CAS  PubMed  Google Scholar 

  10. Hombrebueno JR, Lee EJ, Martínez-Ruiz N, García-Alcázar A, Grzywacz NM, De Juan J (2012) Aquaporin-4 immunoreactivity in Müller and amacrine cells of marine teleost fish retina. Brain Res 1432:46–55

    Article  CAS  PubMed  Google Scholar 

  11. Zichichi R, Magnoli D, Montalbano G, Laurà R, Vega JA, Ciriaco E, Germanà A (2011) Aquaporin 4 in the sensory organs of adult zebrafish (Danio rerio). Brain Res 1384:23–28

    Article  CAS  PubMed  Google Scholar 

  12. Ortaka H, Caylib S, Ocaklıb S, Söğütc E, Ekicid F, Tas U, Demir S (2013) Age-related changes of aquaporin expression patterns in the postnatal rat retina. Acta Histochem 115:382–388

    Article  Google Scholar 

  13. Iandiev I, Biedermann B, Reichenbach A, Wiedemann P, Bringmann A (2006) Expression of aquaporin-9 immunoreactivity by catecholaminergic amacrine cells in the rat retina. Neurosci Lett 398:264–267

    Article  CAS  PubMed  Google Scholar 

  14. Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22:367–378

    Article  CAS  PubMed  Google Scholar 

  15. Wang D, Owler BK (2011) Expression of AQP1 and AQP4 in paediatric brain tumours. J Clin Neurosci 18:122–127

    Article  CAS  PubMed  Google Scholar 

  16. Fukuda M, Nakanishi Y, Fuse M, Yokoi N, Hamada Y, Fukagawa M, Negi A, Nakamura M (2010) Altered expression of aquaporins 1 and 4 coincides with neurodegenerative events in retinas of spontaneously diabetic Torii rats. Exp Eye Res 90:17–25

    Article  CAS  PubMed  Google Scholar 

  17. Nagelhus EA, Veruki ML, Torp R, Haug FM, Laake JH, Nielsen S, Agre P, Ottersen OP (1998) Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Müller cells and fibrous astrocytes. J Neurosci 18:2506–2519

    CAS  PubMed  Google Scholar 

  18. Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nielsen S, Kurachi Y, Ottersen OP (1999) Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Müller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26:47–54

    Article  CAS  PubMed  Google Scholar 

  19. Li XM, Wendu RL, Yao J, Ren Y, Zhao YX, Cao GF, Qin J, Yan B (2014) Abnormal glutamate metabolism in the retina of aquaporin 4 (AQP4) knockout mice upon light damage. Neurol Sci 35:847–853

    Article  PubMed  Google Scholar 

  20. Kumar B, Gupta SK, Srinivasan BP, Nag TC, Srivastava S, Saxena R, Jha KA (2013) Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc Res 87:65–74

    Article  CAS  PubMed  Google Scholar 

  21. Goodyear MJ, Crewther SG, Junghans BM (2009) A role for aquaporin-4 in fluid regulation in the inner retina. Vis Neurosci 26:159–165

    Article  PubMed  Google Scholar 

  22. Goodyear MJ, Crewther SG, Murphy MJ, Giummarra L, Hazi A, Junghans BM, Crewther DP (2010) Spatial and temporal dissociation of AQP4 and Kir4.1 expression during induction of refractive errors. Mol Vis 16:1610–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Iandiev I, Wurm A, Hollborn M, Wiedemann P, Grimm C, Remé CE, Reichenbach A, Pannicke T, Bringmann A (2008) Müller cell response to blue light injury of the rat retina. Invest Ophthalmol Vis Sci 49:3559–3567

    Article  PubMed  Google Scholar 

  24. Da T, Verkman AS (2004) Aquaporin-4 gene disruption in mice protects against impaired retinal function and cell death after ischemia. Invest Ophthalmol Vis Sci 45:4477–4483

    Article  PubMed  Google Scholar 

  25. Dibas A, Yang MH, He S, Bobich J, Yorio T (2008) Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. Mol Vis 14:1770–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Organisciak DT, Vaughan DK (2010) Retinal light damage: mechanisms and protection. Prog Retin Eye Res 29:113–134

    Article  PubMed  Google Scholar 

  27. Basha AA, Mathangi DC, Shyamala R, Rao RK (2014) Protective effect of light emitting diode phototherapy on fluorescentlight induced retinal damage in Wistar strain albino rats. Ann Anat 196:312–316

    Article  Google Scholar 

  28. Reese CD (2008) Industrial safety and health for administrative services. CRC Press, Boca Raton

    Google Scholar 

  29. Li T, Troilo D, Glasser A, Howland HC (1995) Constant light produces severe corneal flattening and hyperopia in chickens. Vision Res 35:1203–1209

    Article  CAS  PubMed  Google Scholar 

  30. Kitano S, Morgan J, Caprioli J (1996) Hypoxic and excitotoxic damage to cultured rat retinal ganglion cells. Exp Eye Res 63:105–112

    Article  CAS  PubMed  Google Scholar 

  31. Izumi Y, Kirby CO, Benz AM, Olney JW, Zorumski CF (1999) Müller cell swelling, glutamate uptake, and excitotoxic neurodegeneration in the isolated rat retina. Glia 25:379–389

    Article  CAS  PubMed  Google Scholar 

  32. Vitry FD, Picart R, Jacque C, Tixier-Vidal A (1981) Glial fibrillary acidic protein. Dev Neurosci 4:457–460

    Article  PubMed  Google Scholar 

  33. Morris VB, Shorey CD (1967) An electron microscope study of types of receptor in the chick retina. J Comp Neurol 129:13–340

    Article  Google Scholar 

  34. Marshall J, Mellerio J, Palmer DA (1972) Damage to pigeon retinae by moderate illumination from fluorescent lamps. Exp Eye Res 14:164–169

    Article  CAS  PubMed  Google Scholar 

  35. Thomson LR, Toyoda Y, Langner A, Delori FC, Garnett KM, Craft N, Nichols CR, Cheng KM, Dorey CK (2002) Elevated retinal zeaxanthin and prevention of light-induced photoreceptor cell death in quail. Invest Ophthalmol Vis Sci 43:3538–3549

    PubMed  Google Scholar 

  36. Lauber JK (1987) Light-induced avian glaucoma as an animal model for human primary glaucoma. J Ocul Pharmacol 3:77–100

    Article  CAS  PubMed  Google Scholar 

  37. Montiani-Ferreira F, Fischer A, Cernuda-Cernuda R, Kiupel M, DeGrip WJ, Sherry D, Cho SS, Shaw GC, Evans MG, Hocking PM, Petersen-Jones SM (2005) Detailed histopathologic characterization of the retinopathy, globe enlarged (rge) chick phenotype. Mol Vis 11:11–27

    CAS  PubMed  Google Scholar 

  38. Brison E, Jacomy H, Desforges M, Talbot PJ (2014) Novel treatment with neuroprotective and antiviral properties against a neuroinvasive human respiratory virus. J Virol 88:1548–1563

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cebulla CM, Zelinka CP, Scott MA, Lubow M, Bingham A, Rasiah S, Mahmoud AM, Fischer AJ (2012) A chick model of retinal detachment: cone rich and novel. PLoS One 7:e44257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kanan Y, Wicker LD, Al-Ubaidi MR, Mandal NA, Kasus-Jacobi A (2008) Retinal dehydrogenase RDH1 and RDH2 in the mouse retina: expression levels during development and regulation by oxidative stress. Invest Ophthalmol Vis Sci 49:1071–1078

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roehlecke C, Schumann U, Ader M, Brunssen C, Bramke S, Morawietz H, Funk RH (2013) Stress reaction in outer segments of photoreceptors after blue light irradiation. PLoS One 8:e71570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li T, Howland HC, Troilo D (2000) Diurnal illumination patterns affect the development of the chick eye. Vision Res 40:2387–2393

    Article  CAS  PubMed  Google Scholar 

  43. Dunaief JL, Dentchev T, Ying GS, Milam AH (2002) The role of apoptosis in age-related macular degeneration. Arch Ophthalmol 120:1435–1442

    Article  PubMed  Google Scholar 

  44. Li XM, Wendu RL, Yao J, Ren Y, Zhao YX, Cao GF, Qin J, Yan B (2014) Abnormal glutamate metabolism in the retina of aquaporin 4 (AQP4) knockout mice upon light damage. Neurol Sci 35:847–853

    Article  PubMed  Google Scholar 

  45. Dai M, Xia XB, Xiong SQ (2012) BDNF regulates GLAST and glutamine synthetase in mouse retinal Müller cells. J Cell Physiol 227:596–603

    Article  CAS  PubMed  Google Scholar 

  46. Crewther SG, Liang H, Junghans BM, Crewther DP (2006) Ionic control of ocular growth and refractive change. Proc Natl Acad Sci USA 103:15663–15668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zeng XN, Sun XL, Gao L, Fan Y, Ding JH, Hu G (2007) Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol Cell Neurosci 34:34–39

    Article  CAS  PubMed  Google Scholar 

  48. Verkman AS, Ruiz-Ederra J, Levin MH (2008) Functions of aquaporins in the eye. Prog Retin Eye Res 27:420–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Iandiev I, Pannicke T, Biedermann B, Wiedemann P, Reichenbach A, Bringmann A (2006) Ischemia–reperfusion alters the immunolocalization of glial aquaporins in rat retina. Neurosci Lett 408:108–112

    Article  CAS  PubMed  Google Scholar 

  50. Ruiz-Ederra J, Zhang H, Verkman AS (2007) Evidence against functional interaction between aquaporin-4 water channels and Kir4.1 potassium channels in retinal Müller cells. J Biol Chem 282:21866–21872

    Article  CAS  PubMed  Google Scholar 

  51. Yuan S, Zhang W, Ding J, Yao J, Jiang Q, Hu G (2009) Increased sensitivity to retinal light damage in aquaporin-4 knockout mice. Exp Eye Res 89:119–122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the SERB (DST, Government of India, New Delhi, No. AS-27/2012; TCN) for the financial support. KAJ, PK and VK received fellowships from UGC, AIIMS and CSIR, respectively. The TEM work was done at SAIF (DST), AIIMS-New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Chandra Nag.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, K.A., Nag, T.C., Kumar, V. et al. Differential Expression of AQP1 and AQP4 in Avascular Chick Retina Exposed to Moderate Light of Variable Photoperiods. Neurochem Res 40, 2153–2166 (2015). https://doi.org/10.1007/s11064-015-1698-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1698-7

Keywords

Navigation