Skip to main content

Advertisement

Log in

Vascular Endothelial Growth Factor Enhanced the Angiogenesis Response of Human Umbilical Cord-Derived Mesenchymal Stromal Cells in a Rat Model of Radiation Myelopathy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The present study was designed to examine a synergistic role for VEGF and human umbilical cord-derived MSCs (UC-MSCs) therapy in a rat model of radiation myelopathy. UC-MSCs and VEGF were injected through the tail vein at 90, 97, 104 and 111 days post-irradiation. Behavioral tests were performed, and histological damage was examined. The microcirculation in the spinal cord was assessed using von Willebrand factor immunohistochemical analysis and laser-Doppler flowmetry. The microenvironment in the spinal cord was determined by measuring the pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α in the serum and the anti-inflammatory cytokines brain-derived neurotrophic factor and glial cell-derived neurotrophic factor in the spinal cord. The UC-MSCs processed with VEGF, including VEGF165-induced UC-MSC (iUC), VEGF and UC-MSCs (VEGF-UC), increased the endothelial cell density and the microvessel density in the white matter and gray matter of the spinal cord, raised the relative magnitude of spinal cord blood flow compared to UC-MSCs treatment alone. Our data provided the first evidence that vascular endothelial growth factor enhanced the angiogenesis response of human umbilical cord-derived mesenchymal stromal cells in a rat model of radiation myelopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ruifrok AC, Stephens LC, van der Kogel AJ (1994) Radiation response of the rat cervical spinal cord after irradiation at different ages: tolerance, latency and pathology. Int J Radiat Oncol Biol Phys 29:73–79

    Article  CAS  PubMed  Google Scholar 

  2. Rezvani M, Birds DA, Hodges H, Hopewell JW, Milledew K, Wilkinson JH (2001) Modification of radiation myelopathy by the transplantation of neural stem cells in the rat. Radiat Res 156:408–412

    Article  CAS  PubMed  Google Scholar 

  3. Coderre JA, Morris GM, Micca PL, Hopewell JW, Verhagen I, Kleiboer BJ, van der Kogel AJ (2006) Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat Res 166:495–503

    Article  CAS  PubMed  Google Scholar 

  4. Myers R, Rogers MA, Hornsey S (1986) A reappraisal of the roles of glial and vascular elements in the development of white matter necrosis in irradiated rat spinal cord. Br J Cancer Suppl 7:221–223

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Van der Kogel AJ (1979) Late effects of radiation on the spinal cord. Dose-effect relationships and pathogenesis. Monograph, publication of the Radiobiological Institute TNO, Rijswijk, p 160

    Google Scholar 

  6. Van der Kogel AJ (1980) Mechanisms of late injury in the spinal cord. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven Press Ltd, New York, pp 46l–470

    Google Scholar 

  7. Van der Kogel AJ (1991) Central nervous system radiation injury in small animal models. In: Gutin PH, Leibel SA, Sheline GE (eds) Radiation injury to the nervous system. Raven Press Ltd, New York, pp 91–111

    Google Scholar 

  8. Widenfalk J, Lipson A, Jubran M, Hofstetter C, Ebendal T, Cao Y, Olson I (2003) Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience 120:951–960

    Article  CAS  PubMed  Google Scholar 

  9. Zachary I (2005) Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals 14:207–221

    Article  CAS  PubMed  Google Scholar 

  10. Tang J, Wang J, Zheng F, Yang J, Kong X, Guo L, Zhang L, Huang Y (2009) Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Exp Cell Res 315:3521–3531. doi:10.1016/j.yexcr.2009.09.026

    Article  CAS  PubMed  Google Scholar 

  11. Tang JM, Xie QY, Pan GD, Wang JN, Wang MJ (2006) Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg 30:353–361

    Article  PubMed  Google Scholar 

  12. Ball SG, Shuttleworth CA, Kielty CM (2007) Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol 177:489–500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Oudega M (2012) Molecular and cellular mechanisms underlying the role of blood vessels in spinal cord injury and repair. Cell Tissue Res 349:269–288. doi:10.1007/s00441-012-1440-6

    Article  CAS  PubMed  Google Scholar 

  14. Benton RL, Whittemore SR (2003) VEGF165 therapy exacerbates secondary damage following spinal cord injury. Neurochem Res 28:1693–1703

    Article  CAS  PubMed  Google Scholar 

  15. Tang J, Wang J, Zheng F, Kong X, Guo L, Yang J, Zhang L, Huang Y (2010) Combination of chemokine and angiogenic factor genes and mesenchymal stem cells could enhance angiogenesis and improve cardiac function after acute myocardial infarction in rats. Mol Cell Biochem 339:107–118. doi:10.1007/s11010-009-0374-0

    Article  CAS  PubMed  Google Scholar 

  16. Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R (2012) Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS ONE 7:e39500. doi:10.1371/journal.pone.0039500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ritfeld GJ, Nandoe Tewarie RD, Vajn K, Rahiem ST, Hurtado A, Wendell DF, Roos RA, Oudega M (2012) Bone marrow stromal cell-mediated tissue sparing enhances functional repair after spinal cord contusion in adult rats. Cell Transplant 21:1561–1575

    Article  PubMed  Google Scholar 

  18. Fink KD, Rossignol J, Crane AT, Davis KK, Bombard MC, Bavar AM, Clerc S, Lowrance SA, Song C, Lescaudron L, Dunbar GL (2013) Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: behavioral and neuropathological analysis. Stem Cell Res Ther 4:130. doi:10.1186/scrt341

    Article  PubMed Central  PubMed  Google Scholar 

  19. Wei L, Zhang J, Xiao XB, Mai HX, Zheng K, Sun WL, Wang XB, Wang L, Liang F, Yang ZL, Liu Y, Wang YQ, Li ZF, Wang JN, Zhang WJ, You H (2014) Multiple injections of human umbilical cord-derived mesenchymal stromal cells through the tail vein improves microcirculation and the microenvironment in a rat model of radiation myelopathy. J Transl Med 12:246. doi:10.1186/s12967-014-0246-6

    Article  PubMed Central  PubMed  Google Scholar 

  20. Li YQ, Chen P, Haimovitz-Friedman A, Reilly RM, Wong CS (2003) Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res 63:5950–5956

    CAS  PubMed  Google Scholar 

  21. Li YQ, Chen P, Jain V, Reilly RM, Wong CS (2004) Early radiation-induced endothelial cell loss and blood-spinal cord barrier break down in the rat spinal cord. Radiat Res 161:143–152

    Article  CAS  PubMed  Google Scholar 

  22. Nordal RA, Wong CS (2004) Intercellular adhesion molecule-1 and blood-spinal cord barrier disruption in central nervous system radiation injury. J Neuropathol Exp Neurol 63:474–483

    CAS  PubMed  Google Scholar 

  23. Chiang CS, Mason KA, Withers HR, McBride WH (1992) Alteration in myelin-associated proteins following spinal cord irradiation in guinea pigs. Int J Radiat Oncol Biol Phys 24:929–937

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Wei L, Sun WL, Wang L, Zhang WJ, You H (2014) Radiation-induced endothelial cell loss and reduction of the relative magnitude of the blood flow in the rat spinal cord. Brain Res 1583:193–200. doi:10.1016/j.brainres.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  25. Wong CS, Van der Kogel AJ (2004) Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol Interv 4:273–284

    Article  CAS  PubMed  Google Scholar 

  26. Chari DM, Gilson JM, Franklin RJ, Blakemore WF (2006) Oligodendrocyte progenitor cell (OPC) transplantation is unlikely to offer a means of preventing X-irradiation induced damage in the CNS. Exp Neurol 198:145–153

    Article  CAS  PubMed  Google Scholar 

  27. Sun Y, Xu CC, Li J, Guan XY, Gao L, Ma LX, Li RX, Peng YW, Zhu GP (2013) Transplantation of oligodendrocyte precursor cells improves locomotion deficits in rats with spinal cord irradiation injury. PLoS ONE 8:e57534. doi:10.1371/journal.pone.0057534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Giunti D, Parodi B, Usai C, Vergani L, Casazza S, Bruzzone S, Mancardi G, Uccelli A (2012) Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1. Stem Cells 30(9):2044–2253. doi:10.1002/stem.1174

    Article  CAS  PubMed  Google Scholar 

  29. Lee JK, Schuchman EH, Jin HK, Bae JS (2012) Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activated by amyloid β ameliorates Alzheimer’s disease in mice by recruiting bone marrow-induced microglia immune responses. Stem Cells 30(7):1544–1555. doi:10.1002/stem.1125

    Article  CAS  PubMed  Google Scholar 

  30. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Wu XJ, Huang L, Zhou Q, Song YM, Li AM, Jin J, Cui B (2005) Mesenchymal stem cells participating in ex vivo endothelium repair and its effect on vascular smooth muscle cells growth. Int J Cardiol 105:274–282

    Article  PubMed  Google Scholar 

  32. Li YQ, Ballinger JR, Nordal RA, Su ZF, Wong CS (2001) Hypoxia in radiation induced blood-spinal cord barrier breakdown. Cancer Res 61:3348–3354

    CAS  PubMed  Google Scholar 

  33. Kim JH, Chung YG, Kim CY, Kim HK, Lee HK (2004) Upregulation of VEGF and FGF2 in normal rat brain after experimental intraoperative radiation therapy. J Korean Med Sci 19:879–886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Chen J, Dassarath M, Yin Z, Liu H, Yang K, Wu G (2011) Radiation induced temporal lobe necrosis in patients with nasopharyngeal carcinoma: a review of new avenues in its management. Radiat Oncol 6:128. doi:10.1186/1748-717X-6-128

    Article  PubMed Central  PubMed  Google Scholar 

  35. Gonzalez J, Kumar AJ, Conrad CA, Levin VA (2007) Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67:323–326

    Article  CAS  PubMed  Google Scholar 

  36. Torcuator R, Zuniga R, Mohan YS, Rock J, Doyle T, Anderson J, Gutierrez J, Ryu S, Jain R, Rosenblum M, Mikkelsen T (2009) Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J Neurooncol 94:63–68. doi:10.1007/s11060-009-9801-z

    Article  CAS  PubMed  Google Scholar 

  37. Wong ET, Huberman M, Lu XQ, Mahadevan A (2008) Bevacizumab reverses cerebral radiation necrosis. J Clin Oncol 26:5649–5650. doi:10.1200/JCO.2008.19.1866

    Article  PubMed  Google Scholar 

  38. Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, Prabhu S, Loghin M, Gilbert MR, Jackson EF (2011) Randomized double-blind placebo controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79:1487–1495. doi:10.1016/j.ijrobp.2009.12.061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Jiang X, Engelbach JA, Yuan L, Cates J, Gao F, Drzymala RE, Hallahan DE, Rich KM, Schmidt RE, Ackerman JJ, Garbow JR (2014) Anti-VEGF antibodies mitigate the development of radiation necrosis in mouse brain. Clin Cancer Res 20:2695–2702. doi:10.1158/1078-0432.CCR-13-1941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was primarily supported by a Grant from the Fundamental Research Funds for nonprofit public scientific research institutions of Chongqing from Chongqing Science and Technology Commission (Grant no. 2015CSTC-JBKY-01702 to L. Wei). It was partially supported by Grants from the National Natural Science Foundation of China (NSFC Grant Numbers 81001220 and 81370077 to H. You), the Affiliated Hospital of the Academy of Military Medical Sciences (to H. You), and the 12th Five-Year Project of PLA China (to H. You). H. You is supported in part by a RONPAKU Fellowship (ID No: R11301) from the Japan Society for the Promotion of Science (JSPS). We thank Prof. Shigetaka Yoshida at Asahikawa Medical University in Japan for supervising the revision process of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, H., Wei, L., Zhang, J. et al. Vascular Endothelial Growth Factor Enhanced the Angiogenesis Response of Human Umbilical Cord-Derived Mesenchymal Stromal Cells in a Rat Model of Radiation Myelopathy. Neurochem Res 40, 1892–1903 (2015). https://doi.org/10.1007/s11064-015-1684-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1684-0

Keywords

Navigation