Skip to main content

Advertisement

Log in

Pten Inhibitor-bpV Ameliorates Early Postnatal Propofol Exposure-Induced Memory Deficit and Impairment of Hippocampal LTP

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Early postnatal propofol administration has potential detrimental effects on hippocampal synaptic development and memory. Therapeutic method is still lack due to unknown mechanisms. In this study, a 7-day propofol protocol was applied to model anesthesia in neonatal mice. Phosphatase and tensin homolog deleted on chromosome ten (Pten) inhibitor bisperoxovanadium (bpV) was pre-applied before propofol to study its potential protection. After propofol application, Pten level increased while phospho-AKT (p-AKT) (Ser473) decreased in dorsal hippocampus. Interestingly, i.p. injection of Pten inhibitor reversed the decrease of p-AKT. Two months after administration, basal synaptic transmission, hippocampal long-term potentiation (LTP) and long-term memory were reduced in propofol-administrated mice. By contrast, i.p. injection of Pten inhibitor at a dose of 0.2 mg/kg/day before propofol reversed the detrimental effects due to propofol application. Consistently, bpV injection also reversed propofol application-induced decrease of synaptic plasticity-related proteins, including p-CamKIIα, p-PKA and postsynaptic density protein 95. Taken together, our results demonstrate that bpV injection could reverse early propofol exposure-induced decrease of memory and hippocampal LTP. bpV might be a potential therapeutic for memory impairment after early propofol postnatal application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Neukom L, Vastani N, Seifert B, Spahn DR, Maurer K (2012) Propofol decreases the axonal excitability in rat primary sensory afferents. Life Sci 90:343–350

    Article  CAS  PubMed  Google Scholar 

  2. Quan X, Yi J, Ye TH, Tian SY, Zou L, Yu XR, Huang YG (2013) Propofol and memory: a study using a process dissociation procedure and functional magnetic resonance imaging. Anaesthesia 68:391–399

    Article  CAS  PubMed  Google Scholar 

  3. Veselis RA, Reinsel RA, Feshchenko VA, Johnson R Jr (2004) Information loss over time defines the memory defect of propofol: a comparative response with thiopental and dexmedetomidine. Anesthesiology 101:831–841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Davies M, Thuynsma RP, Dunn SM (1998) Effects of propofol and pentobarbital on ligand binding to GABAA receptors suggest a similar mechanism of action. Can J Physiol Pharmacol 76:46–52

    Article  CAS  PubMed  Google Scholar 

  5. Gao J, Peng S, Xiang S, Huang J, Chen P (2014) Repeated exposure to propofol impairs spatial learning, inhibits LTP and reduces CaMKIIalpha in young rats. Neurosci Lett 560:62–66

    Article  CAS  PubMed  Google Scholar 

  6. Huang YY, Kandel ER (1994) Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn Mem 1:74–82

    CAS  PubMed  Google Scholar 

  7. Impey S, Obrietan K, Wong ST, Poser S, Yano S, Wayman G, Deloulme JC, Chan G, Storm DR (1998) Cross talk between ERK and PKA is required for Ca2 + stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21:869–883

    Article  CAS  PubMed  Google Scholar 

  8. Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci USA 92:8856–8860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Waite KA, Sinden MR, Eng C (2005) Phytoestrogen exposure elevates PTEN levels. Hum Mol Genet 14:1457–1463

    Article  CAS  PubMed  Google Scholar 

  10. Ning K, Drepper C, Valori CF, Ahsan M, Wyles M, Higginbottom A, Herrmann T, Shaw P, Azzouz M, Sendtner M (2010) PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons. Hum Mol Genet 19:3159–3168

    Article  CAS  PubMed  Google Scholar 

  11. Amiri A, Cho W, Zhou J, Birnbaum SG, Sinton CM, McKay RM, Parada LF (2012) Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci 32:5880–5890

    Article  CAS  PubMed  Google Scholar 

  12. Zhu G, Wang Y, Li J, Wang J (2015) Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice. Neuroscience 292:81–89

    Article  CAS  PubMed  Google Scholar 

  13. Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, Gavrilova N, Mueller B, Liu X, Wu H (1999) PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA 96:6199–6204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zhu G, Liu Y, Wang Y, Bi X, Baudry M (2015) Different patterns of electrical activity lead to long-term potentiation by activating different intracellular pathways. J Neurosci 35:621–633

    Article  PubMed Central  PubMed  Google Scholar 

  15. Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5:24–34

    Article  CAS  PubMed  Google Scholar 

  16. Taghon TA, Masunga AN, Small RH, Kashou NH (2015) A comparison of functional magnetic resonance imaging findings in children with and without a history of early exposure to general anesthesia. Paediatr Anaesth 25:239–246

    Article  PubMed  Google Scholar 

  17. Zhou ZB, Yang XY, Yuan BL, Niu LJ, Zhou X, Huang WQ, Feng X, Zhou LH (2015) Sevoflurane-induced down-regulation of hippocampal oxytocin and arginine vasopressin impairs juvenile social behavioral abilities. J Mol Neurosci 56:70–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Liu A, Li Y, Tan T, Tian X (2014) Early exposure to sevoflurane inhibits Ca(2+) channels activity in hippocampal CA1 pyramidal neurons of developing rats. Brain Res 1557:1–11

    Article  CAS  PubMed  Google Scholar 

  19. Zhao T, Li Y, Wei W, Savage S, Zhou L, Ma D (2014) Ketamine administered to pregnant rats in the second trimester causes long-lasting behavioral disorders in offspring. Neurobiol Dis 68:145–155

    Article  CAS  PubMed  Google Scholar 

  20. Lee BH, Chan JT, Kraeva E, Peterson K, Sall JW (2014) Isoflurane exposure in newborn rats induces long-term cognitive dysfunction in males but not females. Neuropharmacology 83:9–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kajimoto M, Atkinson DB, Ledee DR, Kayser EB, Morgan PG, Sedensky MM, Isern NG, Des Rosiers C, Portman MA (2014) Propofol compared with isoflurane inhibits mitochondrial metabolism in immature swine cerebral cortex. J Cereb Blood Flow Metab 34:514–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Karen T, Schlager GW, Bendix I, Sifringer M, Herrmann R, Pantazis C, Enot D, Keller M, Kerner T, Felderhoff-Mueser U (2013) Effect of propofol in the immature rat brain on short- and long-term neurodevelopmental outcome. Plos One 8:e64480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Takamatsu I, Sekiguchi M, Wada K, Sato T, Ozaki M (2005) Propofol-mediated impairment of CA1 long-term potentiation in mouse hippocampal slices. Neurosci Lett 389:129–132

    Article  CAS  PubMed  Google Scholar 

  24. Nagashima K, Zorumski CF, Izumi Y (2005) Propofol inhibits long-term potentiation but not long-term depression in rat hippocampal slices. Anesthesiology 103:318–326

    Article  CAS  PubMed  Google Scholar 

  25. Wang W, Wang H, Gong N, Xu TL (2006) Changes of K+-Cl- cotransporter 2 (KCC2) and circuit activity in propofol-induced impairment of long-term potentiation in rat hippocampal slices. Brain Res Bull 70:444–449

    Article  PubMed  Google Scholar 

  26. Winder DG, Martin KC, Muzzio IA, Rohrer D, Chruscinski A, Kobilka B, Kandel ER (1999) ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron 24:715–726

    Article  CAS  PubMed  Google Scholar 

  27. Tomé CML, Bauer C, Nottingham C, Smith C, Blackstone K, Brown L, Hlavaty C, Nelson C, Daker R, Sola R, Miller R, Bryan R, Turner CP (2006) Mk801-induced caspase-3 in the postnatal brain: inverse relationship with calcium binding proteins. Neuroscience 141:1351–1363

    Article  Google Scholar 

  28. Cameron HA, McEwen BS, Gould E (1995) Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15:4687–4692

    CAS  PubMed  Google Scholar 

  29. Wang Y, Briz V, Chishti A, Bi X, Baudry M (2013) Distinct roles for mu-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci 33:18880–18892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Additional information

Yuan-Lin Wang and Feng Li have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YL., Li, F. & Chen, X. Pten Inhibitor-bpV Ameliorates Early Postnatal Propofol Exposure-Induced Memory Deficit and Impairment of Hippocampal LTP. Neurochem Res 40, 1593–1599 (2015). https://doi.org/10.1007/s11064-015-1633-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1633-y

Keywords

Navigation