Skip to main content

Advertisement

Log in

Mitochondrial Sirt3 Expression is Decreased in APP/PS1 Double Transgenic Mouse Model of Alzheimer’s Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Emerging data suggests that mitochondrial dysfunction is prominently involved in Alzheimer disease (AD) progression. Sirtuin-3 (Sirt3) is a member of the sirtuin family of nicotinamide adenine dinucleotide dependent deacetylases that regulates a variety of mitochondrial functions and suppresses mitochondria-related physiology. Here, we determined sirt3 expression in a mouse model of AD. Spatial learning and memory were tested by Morris water maze in APP/PS1 double transgenic mice. The expression of sirt3 was assayed by real-time quantitative PCR and western blotting. Age-and gender-matched wild-type (WT) littermates were used as controls. Cortical sirt3 localization was assessed using immunohistochemistry. The expression of sirt3 mRNA was significantly lower in the cortex of APP/PS1 double transgenic mice than in WT littermates (0.83 ± 0.24 vs. 1.10 ± 0.21, P < 0.05). A comparable reduction was found in sirt3 protein levels using western blotting. The ratio of mean optical density (MOD) of total sirt3/β-actin in the cortex was 0.77 ± 0.11 in APP/PS1 double transgenic mice and 1.34 ± 0.17 in the WT littermates (P < 0.01). Immunohistochemistry showed the same change as western blotting. The ratio of MOD of integral optical density/total area in APP/PS1 and WT littermates was 0.58 ± 0.02 and 0.71 ± 0.05 (P < 0.01). These data show that sirt3 was depleted in APP/PS1 double transgenic mice. The results suggest that mitochondrial sirt3 might participate in the development of AD via mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    CAS  PubMed  Google Scholar 

  2. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430(7000):631–639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842(8):1219–1231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Leuner K, Schütt T, Kurz C et al (2012) Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxid Redox Signal 16(12):1421–1433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404(1):1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Langley B, Sauve A (2013) Sirtuin deacetylases as therapeutic targets in the nervous system. Neurotherapeutics 10(4):605–620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Qin W, Yang T, Ho L et al (2006) Neuronal sirt1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281(31):21745–21754

    Article  CAS  PubMed  Google Scholar 

  8. Kim D, Nguyen MD, Dobbin MM et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26(13):3169–3179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Giralt A, Villarroya F (2012) SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J 444(1):1–10

    Article  CAS  PubMed  Google Scholar 

  10. Brenmoehl J, Hoeflich A (2013) Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrial 13(6):755–761

    Article  CAS  Google Scholar 

  11. Someya S, Yu W, Hallows WC et al (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143(5):802–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zou Y, Li Y, Yu W et al (2013) Hypoxia-up-regulated mitochondrial movement regulator does not contribute to the APP/PS1 double transgenic mouse model of Alzheimer’s disease. Dement Geriatr Cogn Disord 36(3–4):137–145

    Article  CAS  PubMed  Google Scholar 

  13. Zhong Z, Yang L, Wu X et al (2014) Evidences for B6C3-Tg (APPswe/PSEN1dE9) double-transgenic mice between 3 and 10 months as an age-related Alzheimer’s disease model. J Mol Neurosci 53(3):370–376

    Article  CAS  PubMed  Google Scholar 

  14. Glover AR, Zhao JT, Ip JC et al (2015) Long noncoding RNA profiles of adrenocortical cancer can be used to predict recurrence. Endocr Relat Cancer 22(1):99–109

    Article  CAS  PubMed  Google Scholar 

  15. Elman JA, Madison CM, Baker SL, et al (2014) Effects of beta-amyloid on resting state functional connectivity within and between networks reflect known patterns of regional vulnerability. Cereb Cortex. doi:10.1093/cercor/bhu259

    PubMed Central  Google Scholar 

  16. Xu W, Fitzgerald S, Nixon RA, Levy E, Wilson DA (2015) Early hyperactivity in lateral entorhinal cortex is associated with elevated levels of AβPP metabolites in the Tg2576 mouse model of Alzheimer’s disease. Exp Neurol 264:82–91

    Article  CAS  PubMed  Google Scholar 

  17. Scher MB, Vaquero A, Reinberg D (2007) SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev 21(8):920–928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Iwahara T, Bonasio R, Narendra V, Reinberg D (2012) SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol Cell Biol 32(24):5022–5034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247

    Article  CAS  PubMed  Google Scholar 

  20. Summers DW, DiAntonio A, Milbrandt J (2014) Mitochondrial dysfunction induces Sarm1-dependent cell death in sensory neurons. J Neurosci 9;34(28):9338–9350

  21. Lutz MI, Milenkovic I, Regelsberger G, Kovacs GG (2014) Distinct patterns of sirtuin expression during progression of Alzheimer’s disease. Neuromolecular Med 16(2):405–414

    Article  CAS  PubMed  Google Scholar 

  22. Parihar P, Solanki I, Mansuri ML, Parihar MS (2015) Mitochondrial sirtuins: emerging roles in metabolic regulations, energy homeostasis and diseases. Exp Gerontol 61C:130–141

    Article  Google Scholar 

  23. Hauptmann S, Scherping I, Dröse S et al (2009) Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging 30(10):1574–1586

    Article  CAS  PubMed  Google Scholar 

  24. Trushina E, Nemutlu E, Zhang S et al (2012) Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer’s disease. PLoS One 7(2):e32737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zeng L, Yang Y, Hu Y et al (2014) Age-related decrease in the mitochondrial sirtuin deacetylase sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model. PLoS One 9(2):e88019

    Article  PubMed Central  PubMed  Google Scholar 

  26. Bellizzi D, Rose G, Cavalcante P et al (2005) A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85(2):258–263

    Article  CAS  PubMed  Google Scholar 

  27. Ahn BH, Kim HS, Song S et al (2008) A role for the mitochondrial deacetylase sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 105(38):14447–14452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Musatov A, Robinson NC (2012) Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic Res 46(11):1313–1326

    Article  CAS  PubMed  Google Scholar 

  29. Francis BM, Yang J, Song BJ et al (2014) Reduced levels of mitochondrial complex I subunit NDUFB8 and linked complex I + III oxidoreductase activity in the TgCRND8 mouse model of Alzheimer’s disease. J Alzheimers Dis 39(2):347–355

    CAS  PubMed  Google Scholar 

  30. Dai SH, Chen T, Wang YH et al (2014) Sirt3 protects cortical neurons against oxidative stress via regulating mitochondrial Ca2+ and mitochondrial biogenesis. Int J Mol Sci 15(8):14591–14609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14(2):45–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Weir HJ, Murray TK, Kehoe PG et al (2012) CNS sirt3 expression is altered by reactive oxygen species and in Alzheimer’s disease. PLoS One 7(11):e48225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Key Clinical Specialties Construction Program of China (No. [2013]544) and Application Program of Chongqing Science and Technology Commission, China (cstc2014yykfA110002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Yu.

Additional information

Wenxiu Yang and Yan Zou have contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Zou, Y., Zhang, M. et al. Mitochondrial Sirt3 Expression is Decreased in APP/PS1 Double Transgenic Mouse Model of Alzheimer’s Disease. Neurochem Res 40, 1576–1582 (2015). https://doi.org/10.1007/s11064-015-1630-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1630-1

Keywords

Navigation