Skip to main content
Log in

Unsaturated Analogues of the Neurotransmitter GABA: trans-4-Aminocrotonic, cis-4-Aminocrotonic and 4-Aminotetrolic Acids

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Analogues of the neurotransmitter GABA containing unsaturated bonds are restricted in the conformations they can attain. This review traces three such analogues from their synthesis to their use as neurochemicals. trans-4-Aminocrotonic acid was the first conformationally restricted analogue to be extensively studied. It acts like GABA across a range of macromolecules from receptors to transporters. It acts similarly to GABA on ionotropic receptors. cis-4-Aminocrotonic acid selectively activates bicuculline-insensitive GABAC receptors. 4-Aminotetrolic acid, containing a triple bond, activates bicuculline-sensitive GABAA receptors. These findings indicate that GABA activates GABAA receptors in extended conformations and GABAC receptors in folded conformations. These and related analogues are important for the molecular modelling of ionotropic GABA receptors and to the development of new agents acting selectively on these receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Musashi A (1954) The synthesis of γ-aminocrotonic acid and γ-aminobutyric acid. Hoppe-Seyler’s Z Physiol Chem 297:71–73

    Article  CAS  PubMed  Google Scholar 

  2. Tomita KI (1971) Crystal data and some structural features of γ-aminobutyric acid, 3-aminopropane sulfonic acid and their derivatives. Tetrahedron Lett 12:2587–2588

    Article  Google Scholar 

  3. Jones GP, Pauling PJ (1975) Crystal and molecular structure of trans-4-aminocrotonic acid. J Chem Soc Perkin Trans 2:1059–1062

    Article  Google Scholar 

  4. King EJ (1954) The thermodynamics of ionization of amino acids.1. The ionization constants of gamma-aminobutyric acid. J Am Chem Soc 76:1006–1008

    Article  CAS  Google Scholar 

  5. Beart PM, Johnston GAR, Uhr ML (1972) Competitive inhibition of GABA uptake in rat brain slices by some GABA analogues of restricted conformation. J Neurochem 19:1855–1861

    Article  CAS  PubMed  Google Scholar 

  6. Purpura DP (1960) Pharmacological actions of ω-amino acid drugs on different cortical synaptic organizations. In: Inhibition nervous system gamma-Amino-butyric Acid, Proc Intern Symp, Duarte, Calif vol 1959, pp. 495–514

  7. Krnjevic K, Phillis JW (1963) Iontophoretic studies of neurons in the mammalian cerebral cortex. J Physiol 165:274–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnston GAR, Curtis DR, Beart PM, Game CJA, McCulloch RM, Twitchin B (1975) cis- and trans-4-Aminocrotonic acid as GABA analogues of restricted conformation. J Neurochem 24:157–160

    Article  CAS  PubMed  Google Scholar 

  9. Falch E, Hedegaard A, Nielsen L, Jensen BR, Hjeds H, Krogsgaard-Larsen P (1986) Comparative stereostructure-activity studies on GABA-A and GABA-B receptor-sites and GABA uptake using rat-brain membrane preparations. J Neurochem 47:898–903

    Article  CAS  PubMed  Google Scholar 

  10. Beart PM, Johnston GAR (1973) Transamination of analogues of γ-aminobutyric acid by extracts of rat brain mitochondria. Brain Res 49:459–462

    Article  CAS  PubMed  Google Scholar 

  11. Borowicz KK, Zadrozniak M, Czuczwar SJ (2005) GABAA and GABAC receptors, shows a proconvulsant action in the electroconvulsive threshold test in mice. Pharmacol Rep PR 57:121–123

    CAS  PubMed  Google Scholar 

  12. Chebib M, Vandenberg RJ, Johnston GAR (1997) Analogues of γ-aminobutyric acid (GABA) and trans-4-aminocrotonic acid (TACA) substituted in the 2 position as GABAC receptor antagonists. Br J Pharmacol 122:1551–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beart PM, Curtis DR, Johnston GAR (1971) 4-Aminotetrolic acid: new conformational-restricted analogue of γ-aminobutyric acid. Nature 234:80–81

    CAS  Google Scholar 

  14. Beart PM, Johnston GAR (1972) Acetylenic analogues of γ-aminobutyric acid. Aust J Chem 25:1359–1361

    Article  CAS  Google Scholar 

  15. Jones GP, Pauling PJ (1976) Crystal and molecular structure of 4-aminotetrolic acid (4-amino-but-2-ynoic acid). J Chem Soc Perkin Trans 2:32–33

    Article  Google Scholar 

  16. Warner D, Borthwick PW, Stewart EG (1975) Complete neglect of differential overlap/2 molecular orbital studies on the electronic structure and conformational modes of 4-aminotetrolic acid. J Mol Struct 25:397–402

    Article  CAS  Google Scholar 

  17. Allan RD, Johnston GAR (1985) Synthesis of analogues of GABA. XIII An alternative route to (Z)-4-aminocrotonic acid. Aust J Chem 38:1647–1650

    Article  CAS  Google Scholar 

  18. Duke RK, Allan RD, Drew CA, Johnston GAR, Mewett KN, Long MA, Than C (1993) The preparation of tritiated E-4-aminobut-2-enoic and Z-4-aminobut-2-enoic acids, conformationally restricted analogues of the inhibitory neurotransmitter 4-aminobutanoic acid (GABA). J Label Compd Radiopharm 33:527–540

    Article  CAS  Google Scholar 

  19. Ahern DG, Laseter AG, Filer CN (2003) The synthesis and characterization of [2,3-3H] γ-aminobutyric acid via 4-aminotetrolic acid at high specific activity. Appl Radiat Isot 58:477–479

    Article  CAS  PubMed  Google Scholar 

  20. Filer CN (2010) GABAergic radioligands labelled with tritium. J Label Compd Radiopharm 53:120–129

    Article  CAS  Google Scholar 

  21. Ahern DG, Laseter AG, Filer CN (2002) An improved synthesis of 4-aminotetrolic acid. Synth Commun 32:665–667

    Article  CAS  Google Scholar 

  22. Bowery NG, Jones GP (1976) A comparison of γ-aminobutyric acid and the semi-rigid analogues 4-aminotetrolic acid, 4-aminocrotonic acid and imidazole-4-acetic acid on the isolated superior cervical ganglion of the rat. Br J Pharmacol 56:323–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beart PM, Johnston GAR (1972) Bicuculline and GABA-metabolising enzymes. Brain Res 38:226–227

    Article  CAS  PubMed  Google Scholar 

  24. Johnston GAR (2013) Advantages of an antagonist: bicuculline and other GABA antagonists. Br J Pharmacol 169:328–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnston GAR (2014) Muscimol as an ionotropic GABA receptor agonist. Neurochem Res 39:148–159

    Article  Google Scholar 

  26. Johnston GAR (1996) GABAC receptors: relatively simple transmitter-gated ion channels? Trends Pharmacol Sci 17:319–323

    Article  CAS  PubMed  Google Scholar 

  27. Biedermann B, Eberhardt W, Reichelt W (1994) GABA uptake into isolated retinal Muller glial cells of the guinea-pig detected electrophysiologically. NeuroReport 5:438–440

    Article  CAS  PubMed  Google Scholar 

  28. Chebib M, Johnston GAR (1997) Stimulation of [3H] GABA and beta-[3H] alanine release from rat brain slices by cis-4-aminocrotonic acid. J Neurochem 68:786–794

    Article  CAS  PubMed  Google Scholar 

  29. Krogsgaard-Larsen P, Frølund B, Ebert B (1997) GABA-A receptor agonists, partial agonists, and antagonists. In: Enna SJ, Bowery NG (eds) The GABA receptors, 2nd edn. Humana, Totowa, pp 37–81

    Chapter  Google Scholar 

  30. Drew CA, Johnston GAR, Weatherby RP (1984) Bicuculline-insensitive GABA receptors: studies on the binding of (-)-baclofen to rat cerebellar membranes. Neurosci Lett 52:317–321

    Article  CAS  PubMed  Google Scholar 

  31. Qian H, Dowling JE (1993) Novel GABA responses from rod-driven retinal horizontal cells. Nature 361:162–164

    Article  CAS  PubMed  Google Scholar 

  32. Kusama T, Spivak CE, Whiting P, Dawson VL, Schaeffer JC, Uhl GR (1993) Pharmacology of GABA ρ1 and GABA a/b receptors expressed in Xenopus oocytes and COS cells. Br J Pharmacol 109:200–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feigenspan A, Wassle H, Bormann J (1993) Pharmacology of GABA receptor Cl- channels in rat retinal bipolar cells. Nature 361:159–162

    Article  CAS  PubMed  Google Scholar 

  34. Bormann J, Feigenspan A (1995) GABAC receptors. Trends Neurosci 18:515–519

    Article  CAS  PubMed  Google Scholar 

  35. Chebib M, Johnston GAR (2000) GABA-activated ligand gated ion channels: medicinal chemistry and molecular biology. J Med Chem 43:1427–1447

    Article  CAS  PubMed  Google Scholar 

  36. Pasternack M, Boller M, Pau B, Schmidt M (1999) GABAA and GABAC receptors have contrasting effects on excitability in superior colliculus. J Neurophysiol 82:2020–2023

    CAS  PubMed  Google Scholar 

  37. Gibbs ME, Johnston GAR (2005) Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks. Neuroscience 131:567–576

    Article  CAS  PubMed  Google Scholar 

  38. Johnston GAR, Chebib M, Hanrahan JR, Mewett KN (2010) Neurochemicals for the investigation of GABAC receptors. Neurochem Res 35:1970–1977

    Article  CAS  PubMed  Google Scholar 

  39. Murata Y, Woodward RM, Miledi R, Overman LE (1996) The first selective antagonist for a GABAC receptor. Bioorg Med Chem Lett 6:2073–2076

    Article  CAS  Google Scholar 

  40. Alakuijala A, Alakuijala J, Pasternack M (2006) Evidence for a functional role of GABA receptors in the rat mature hippocampus. Eur J Neurosci 23:514–520

    Article  PubMed  Google Scholar 

  41. Edwards MD, White AM, Platt B (2002) Characterisation of rat superficial superior colliculus neurones: firing properties and sensitivity to GABA. Neuroscience 110:93–104

    Article  CAS  PubMed  Google Scholar 

  42. Kirischuk S, Akyeli J, Iosub R, Grantyn R (2003) Pre- and postsynaptic contribution of GABAC receptors to GABAergic synaptic transmission in rat collicular slices and cultures. Eur J Neurosci 18:752–758

    Article  PubMed  Google Scholar 

  43. Gamel-Didelon K, Kunz L, Fohr KJ, Gratzl M, Mayerhofer A (2003) Molecular and physiological evidence for functional γ-aminobutyric acid GABAC receptors in growth hormone-secreting cells. J Biol Chem 278:20192–20195

    Article  CAS  PubMed  Google Scholar 

  44. Munakata Y, Tsurusaki M, Akasu T (1998) GABAC receptors mediate slow membrane potentials in neurons of the rat major pelvic ganglia. Kurume Med J 45:295–299

    Article  CAS  PubMed  Google Scholar 

  45. Jansen A, Hoepfner M, Herzig KH, Riecken EO, Scherubl H (2000) GABAC receptors in neuroendocrine gut cells: a new GABA-binding site in the gut. Pflugers Archiv 441:294–300

    Article  CAS  PubMed  Google Scholar 

  46. Zizzo MG, Mule F, Serio R (2007) Functional evidence for GABA as modulator of the contractility of the longitudinal muscle in mouse duodenum: role of GABAA and GABAC receptors. Neuropharmacology 52:1685–1690

    Article  CAS  PubMed  Google Scholar 

  47. Reis HJ, Vanden Berghe P, Romano-Silva MA, Smith TK (2006) GABA-induced calcium signaling in cultured enteric neurons is reinforced by activation of cholinergic pathways. Neuroscience 139:485–494

    Article  CAS  PubMed  Google Scholar 

  48. Reis GM, Duarte ID (2007) Involvement of chloride channel coupled GABAC receptors in the peripheral antinociceptive effect induced by GABAC receptor agonist cis-4-aminocrotonic acid. Life Sci 80:1268–1273

    Article  CAS  PubMed  Google Scholar 

  49. Wall MJ (2001) cis-4-Amino-crotonic acid activates alpha 6 subunit-containing GABAA but not GABAC receptors in granule cells of adult rat cerebellar slices. Neurosci Lett 316:37–40

    Article  CAS  PubMed  Google Scholar 

  50. Harvey VL, Duguid IC, Krasel C, Stephens GJ (2006) Evidence that GABA ρ subunits contribute to functional ionotropic GABA receptors in mouse cerebellar Purkinje cells. J Physiol 577:127–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Milligan CJ, Buckley NJ, Garret M, Deuchars J, Deuchars SA (2004) Evidence for inhibition mediated by coassembly of GABAC and GABAC receptor subunits in native central neurons. J Neurosci 24:7241–7250

    Article  CAS  PubMed  Google Scholar 

  52. Hartmann K, Stief F, Draguhn A, Frahm C (2004) Ionotropic GABA receptors with mixed pharmacological properties of GABAA and GABAC receptors. Eur J Pharmacol 497:139–146

    Article  CAS  PubMed  Google Scholar 

  53. Bergmann R, Kongsbak K, Sorensen PL, Sander T, Balle T (2013) A unified model of the GABAA receptor comprising agonist and benzodiazepine binding sites. PLoS One [Electronic Resource] 8:e52323

    Article  CAS  Google Scholar 

  54. Abdel-Halim H, Hanrahan JR, Hibbs DE, Johnston GAR, Chebib M (2008) A molecular basis for agonist and antagonist actions at GABAC receptors. Chem Biol Drug Des 71:306–327

    Article  CAS  PubMed  Google Scholar 

  55. Duke RK, Chebib M, Balcar VJ, Allan RD, Mewett KN, Johnston GAR (2000) (+)- and (-)-cis-2-Aminomethylcyclopropanecarboxy acids show opposite pharmacology at recombinant ρ(1) and ρ(2) GABAC receptors. J Neurochem 75:2602–2610

    Article  CAS  PubMed  Google Scholar 

  56. Ng CK, Kim HL, Gavande N, Yamamoto I, Kumar RJ, Mewett KN, Johnston GAR, Hanrahan JR, Chebib M (2011) Medicinal chemistry of ρ GABAC receptors. Fut Med Chem 3:197–209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

It is a pleasure to contribute to this special issue honouring Philip Beart who was my first PhD student. We have maintained our collaboration over many years most recently on aspects of the history of the International Society for Neurochemistry. I am grateful to Philip Beart, Jane Hanrahan and Ken Mewett for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham A. R. Johnston.

Additional information

Special Issue: In Honor of Dr. Philip Beart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnston, G.A.R. Unsaturated Analogues of the Neurotransmitter GABA: trans-4-Aminocrotonic, cis-4-Aminocrotonic and 4-Aminotetrolic Acids. Neurochem Res 41, 476–480 (2016). https://doi.org/10.1007/s11064-015-1619-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1619-9

Keywords

Navigation