Skip to main content

Advertisement

Log in

Transcriptional Regulation of BACE1 by NFAT3 Leads to Enhanced Amyloidogenic Processing

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Deposition of amyloid β (Aβ) to form neuritic plaques in the brain is the pathological hallmark of Alzheimer’s disease (AD). Aβ is generated from sequential cleavages of the β-amyloid precursor protein (APP) by the β- and γ-secretases, and β-site APP-cleaving enzyme 1 (BACE1) is the essential β-secretase for Aβ generation. Vulnerable regions in AD brains show increased BACE1 protein levels. However, the underlying mechanism how BACE1 is regulated remains to be further illustrated. Nuclear Factor of Activated T-cells (NFAT) has been implicated in AD pathogenesis. Despite the increasing appreciation for the importance of NFAT-dependent transcription in the nervous system, the regulation and function of specific NFAT isoforms in neurons is poorly understood. In this report we found that both BACE1 and NFAT3 levels were significantly increased in the brains of APP/PS1 transgenic mice. We found that overexpression of NFAT3 resulted in increase of BACE1 promoter activity and BACE1 transcription, while disruption of NFAT3 expression decreased BACE1 gene transcription and protein expression in SAS1 cells. In a addition, overexpression of NFAT3 leads to increase levels of Aβ production. Chromatin immunoprecipitation analysis revealed direct binding of NFAT3 to specific DNA sequences within BACE1 promoter region. Taken together, our results indicate that NFAT is a BACE1 transcription factor. Our study suggests that inhibition of NFAT-mediated BACE1 expression may be a valuable drug target for AD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cole SL, Vassar R (2008) The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. J Biol Chem 283:29621–29625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Fukumoto H, Cheung BS, Hyman BT, Irizarry MC (2002) Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol 59:1381–1389

    Article  PubMed  Google Scholar 

  3. Lee EB, Zhang B, Liu K, Greenbaum EA, Doms RW, Trojanowski JQ, Lee VM (2005) BACE overexpression alters the subcellular processing of APP and inhibits Abeta deposition in vivo. J Cell Biol 168:291–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC (2001) BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat Neurosci 4:233–234

    Article  CAS  PubMed  Google Scholar 

  5. Wen Y, Onyewuchi O, Yang S, Liu R, Simpkins JW (2004) Increased beta-secretase activity and expression in rats following transient cerebral ischemia. Brain Res 1009:1–8

    Article  CAS  PubMed  Google Scholar 

  6. Sun X, He G, Qing H, Zhou W, Dobie F, Cai F, Staufenbiel M, Huang LE, Song W (2006) Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci USA 103:18727–18732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sutinen EM, Pirttilä T, Anderson G, Salminen A, Ojala JO (2012) Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflamm 9:199

    Article  CAS  Google Scholar 

  8. Guglielmotto M, Aragno M, Autelli R, Giliberto L, Novo E, Colombatto S, Danni O, Parola M, Smith MA, Perry G, Tamagno E, Tabaton M (2009) The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1alpha. J Neurochem 108:1045–1056

    Article  CAS  PubMed  Google Scholar 

  9. Ge YW, Maloney B, Sambamurti K, Lahiri DK (2004) Functional characterization of the 5′ flanking region of the BACE gene: identification of a 91 bp fragment involved in basal level of BACE promoter expression. Faseb J 18:1037–1039

    CAS  PubMed  Google Scholar 

  10. Oh-hora M, Rao A (2008) Calcium signaling in lymphocytes. Curr Opin Immunol 20:250–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Fric J, Zelante T, Wong AY, Mertes A, Yu HB, Ricciardi-Castagnoli P (2012) NFAT control of innate immunity. Blood 120:1380–1389

    Article  CAS  PubMed  Google Scholar 

  12. Abdul HM, Sama MA, Furman JL, Mathis DM, Beckett TL, Weidner AM, Patel ES, Baig I, Murphy MP, LeVine H 3rd, Kraner S, Norris CM (2009) Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci 29:12957–12969

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ansaloni S, Leung B, Dubey A, Saunders A (2012) Tyrosine kinase receptor B isoforms alter APP and BACE1 endogenous levels independently of BDNF. Adv Alzheimer’s Dis 1:93–101

    Article  Google Scholar 

  14. Shi C, Zheng DD, Fang L, Wu F, Kwong WH, Xu J (2012) Ginsenoside Rg1 promotes nonamyloidgenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt. Biochim Biophys Acta 1820:453–460

    Article  CAS  PubMed  Google Scholar 

  15. Kim HG, Moon M, Choi JG, Park G, Kim AJ, Hur J, Lee KT, Oh MS (2014) Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo. Neurotoxicology 40:23–32

    Article  CAS  PubMed  Google Scholar 

  16. Huang C, Lin Y, Su H, Ye D (2015) Forsythiaside Protects Against Hydrogen Peroxide-Induced Oxidative Stress and Apoptosis in PC12 Cell. Neurochem Res 40:27–35

  17. Mei Z, Situ B, Tan X, Zheng S, Zhang F, Yan P, Liu P (2010) Cryptotanshinione upregulates alpha-secretase by activation PI3K pathway in cortical neurons. Brain Res 1348:165–173

    Article  CAS  PubMed  Google Scholar 

  18. Ueberham U, Hilbrich I, Ueberham E, Rohn S, Glockner P, Dietrich K, Bruckner MK, Arendt T (2012) Transcriptional control of cell cycle-dependent kinase 4 by Smad proteins-implications for Alzheimer’s disease. Neurobiol Aging 33:2827–2840

    Article  CAS  PubMed  Google Scholar 

  19. Christensen MA, Zhou W, Qing H, Lehman A, Philipsen S, Song W (2004) Transcriptional regulation of BACE1, the beta-amyloid precursor protein beta-secretase, by Sp1. Mol Cell Biol 24:865–874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  21. Rossner S, Sastre M, Bourne K, Lichtenthaler SF (2006) Transcriptional and translational regulation of BACE1 expression–implications for Alzheimer’s disease. Prog Neurobiol 79:95–111

    Article  CAS  PubMed  Google Scholar 

  22. Wen Y, Yu WH, Maloney B, Bailey J, Ma J, Marié I, Maurin T, Wang L, Figueroa H, Herman M, Krishnamurthy P, Liu L, Planel E, Lau LF, Lahiri DK, Duff K (2008) Transcriptional regulation of beta-secretase by p25/cdk5 leads to enhanced amyloidogenic processing. Neuron 57:680–690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Chen CH, Zhou W, Liu S, Deng Y, Cai F, Tone M, Tone Y, Tong Y, Song W (2012) Increased NF-kappaB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 15:77–90

    Article  CAS  PubMed  Google Scholar 

  24. Cho HJ, Jin SM, Youn HD, Huh K, Mook-Jung I (2008) Disrupted intracellular calcium regulates BACE1 gene expression via nuclear factor of activated T cells 1 (NFAT 1) signaling. Aging Cell 7:137–147

    Article  CAS  PubMed  Google Scholar 

  25. Cole SL, Vassar R (2008) The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. J Biol Chem 44:29621–29625

    Article  Google Scholar 

  26. Ghosh AK, Osswald HL (2014) BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem Soc Rev 19:6765–6813

    Article  Google Scholar 

  27. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 11:862–872

    Article  Google Scholar 

  28. Reese LC, Taglialatela G (2011) A role for calcineurin in Alzheimer’s disease. Curr Neuropharmacol 9:685–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Abdul HM, Furman JL, Sama MA, Mathis DM, Norris CM (2010) NFATs and Alzheimer’s Disease. Mol Cell Pharmacol 2:7–14

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Thibault O, Gant JC, Landfield PW (2007) Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging Cell 6:307–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Situ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, Z., Yan, P., Tan, X. et al. Transcriptional Regulation of BACE1 by NFAT3 Leads to Enhanced Amyloidogenic Processing. Neurochem Res 40, 829–836 (2015). https://doi.org/10.1007/s11064-015-1533-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1533-1

Keywords

Navigation