Skip to main content

Advertisement

Log in

Montelukast, a Cysteinyl Leukotriene Receptor-1 Antagonist Protects Against Hippocampal Injury Induced by Transient Global Cerebral Ischemia and Reperfusion in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cysteinyl leukotrienes (CysLTs) are potent pro-inflammatory and immune modulating lipid mediators involved in inflammatory diseases and were boosted in human brain after acute phase of cerebral ischemia. The antagonism of CysLTs receptors may offer protection against ischemic damage. Therefore it seemed interesting to study the possible neuroprotective effect of Montelukast, a CysLTR1 antagonist in global cerebral ischemia/reperfusion (IR) injury in rats. Global cerebral ischemia–reperfusion was induced by bilateral carotid artery occlusion for 15 min followed by 60 min reperfusion period. Animals were randomly allocated into three groups (n = 30 per group): Sham operated, I/R control and rats treated with montelukast (0.5 mg/kg, po) daily for 7 days then I/R was induced 1 h after the last dose of montelukast. After reperfusion rats were killed by decapitation, brains were removed and both hippocampi separated and the following biochemical parameters were estimated; lactate dehydrogenase activity, oxidative stress markers (lipid peroxides, nitric oxide and reduced glutathione), inflammatory markers (myeloperoxidase, tumor necrosis factor-alpha, nuclear factor kappa-B, interleukin-6 and interleukin-10), apoptotic biomarkers (caspase 3 and cytochrome C), neurotransmitters (glutamate, gamma aminobutyric acid), Cys-LTs contents and CysLT1 receptor expression; as well as total brain infarct size and histopathological examination of the hippocampus were assessed. Montelukast protected hippocampal tissue by reducing oxidative stress, inflammatory and apoptotic markers. Furthermore, it reduced glutamate and lactate dehydrogenase activity as well as infarct size elevated by I/R. These results were consistent with the histopathological findings. Montelukast showed a neuroprotective effects through antioxidant, anti-inflammatory and antiapoptotic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Byrne PM, Israel E, Drazen JM (1997) Antileukotrienes in the treatment of asthma. Ann Intern Med 127:472–480

    Article  PubMed  Google Scholar 

  2. Salmon JA, Higgs GA (1987) Prostaglandins and leukotrienes as inflammatory mediators. Br Med Bull 43:285–296

    CAS  PubMed  Google Scholar 

  3. Samitas K, Chorianopoulos D, Vittorakis S, Zervas E, Economidou E, Papatheodorou G, Loukides S, Gaga M (2009) Exhaled cysteinyl-leukotrienes and 8-isoprostane in patients with asthma and their relation to clinical severity. Respir Med 103:750–756

    Article  PubMed  Google Scholar 

  4. Kumar S, Verma AK, Das M, Dwivedi PD (2012) Molecular mechanisms of IgE mediated food allergy. Int Immunopharmacol 13:432–439

    Article  CAS  PubMed  Google Scholar 

  5. Kitano K, Usui S, Ootsuji H, Takashima S, Kobayashi D, Murai H, Furusho H, Nomura A, Kaneko S, Takamura M (2014) Rho-kinase activation in leukocytes plays a pivotal role in myocardial ischemia/reperfusion injury. PLoS One 9:e92242

    Article  PubMed Central  PubMed  Google Scholar 

  6. Zhao H, Perez JS, Lu K, George AJ, Ma D (2014) Role of Toll-like receptor 4 in renal graft ischemia-reperfusion injury. Am J Physiol Renal Physiol. doi:10.1152/ajprenal.00469.2013

  7. Grisham MB, Hernandez LA, Granger DN (1986) Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol 251:G567–G574

    CAS  PubMed  Google Scholar 

  8. Parks DA, Bulkley GB, Granger DN, Hamilton SR, McCord JM (1982) Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology 82:9–15

    CAS  PubMed  Google Scholar 

  9. Dahlen SE, Bjork J, Hedqvist P, Arfors KE, Hammarstrom S, Lindgren JA, Samuelsson B (1981) Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci USA 78:3887–3891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ford-Hutchinson AW, Bray MA, Doig MV, Shipley ME, Smith MJ (1980) Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286:264–265

    Article  CAS  PubMed  Google Scholar 

  11. Rae SA, Smith MJ (1981) The stimulation of lysosomal enzyme secretion from human polymorphonuclear leucocytes by leukotriene B4. J Pharm Pharmacol 33:616–617

    Article  CAS  PubMed  Google Scholar 

  12. Serhan CN, Radin A, Smolen JE, Korchak H, Samuelsson B, Weissmann G (1982) Leukotriene B4 is a complete secretagogue in human neutrophils: a kinetic analysis. Biochem Biophys Res Commun 107:1006–1012

    Article  CAS  PubMed  Google Scholar 

  13. Corser-Jensen CE, Goodell DJ, Freund RK, Serbedzija P, Murphy RC, Farias SE, Dell’acqua ML, Frey LC, Serkova N, Heidenreich KA (2014) Blocking leukotriene synthesis attenuates the pathophysiology of traumatic brain injury and associated cognitive deficits. Exp Neurol. doi:10.1016/j.expneurol.2014.03.008

  14. Shi SS, Yang WZ, Tu XK, Wang CH, Chen CM, Chen Y (2013) 5-Lipoxygenase inhibitor zileuton inhibits neuronal apoptosis following focal cerebral ischemia. Inflammation 36:1209–1217

    Article  CAS  PubMed  Google Scholar 

  15. Zhang SH, Wei EQ, Zhu CY, Chen Z, Zhang SF (2004) Protective effect of ONO-1078, a leukotriene receptor antagonist, on focal cerebral ischemia induced by endothelin-1 in rats. Yao Xue Xue Bao 39:1–4

    CAS  PubMed  Google Scholar 

  16. Keam SJ, Lyseng-Williamson KA, Goa KL (2003) Pranlukast: a review of its use in the management of asthma. Drugs 63:991–1019

    Article  CAS  PubMed  Google Scholar 

  17. Anon (1996) Zafirlukast for asthma. Med Lett Drugs Ther 38:111–112

    Google Scholar 

  18. Kobayashi H, Ide H, Handa Y, Aradachi H, Arai Y, Kubota T (1992) Effect of leukotriene antagonist on experimental delayed cerebral vasospasm. Neurosurgery 31:550–555

    Article  CAS  PubMed  Google Scholar 

  19. Zhao R, Shi WZ, Zhang YM, Fang SH, Wei EQ (2011) Montelukast, a cysteinyl leukotriene receptor-1 antagonist, attenuates chronic brain injury after focal cerebral ischaemia in mice and rats. J Pharm Pharmacol 63:550–557

    Article  CAS  PubMed  Google Scholar 

  20. Lorentz K, Klauke R, Schmidt E (1993) Recommendation for the determination of the catalytic concentration of lactate dehydrogenase at 37 degrees C. Standardization committee of the German society for clinical chemistry, enzyme working group of the German society for clinical chemistry. Eur J Clin Chem Clin Biochem 31:897–899

    CAS  PubMed  Google Scholar 

  21. Lowry OH, Rosebrough NJ, FARR AL (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  22. Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  PubMed  Google Scholar 

  23. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  24. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  PubMed  Google Scholar 

  25. Bradley PP, Christensen RD, Rothstein G (1982) Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood 60:618–622

    CAS  PubMed  Google Scholar 

  26. Schultz J, Kaminker K (1962) Myeloperoxidase of the leucocyte of normal human blood. I. Content and localization. Arch Biochem Biophys 96:465–467

    Article  CAS  PubMed  Google Scholar 

  27. Heinrikson RL, Meredith SC (1984) Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem 136:65–74

    Article  CAS  PubMed  Google Scholar 

  28. Malik ZA, Singh M, Sharma PL (2011) Neuroprotective effect of Momordica charantia in global cerebral ischemia and reperfusion induced neuronal damage in diabetic mice. J Ethnopharmacol 133:729–734

    Article  PubMed  Google Scholar 

  29. Rehni AK, Bhateja P, Singh N, Jaggi AS (2008) Implication of mast cell degranulation in ischemic preconditioning-induced prevention of cerebral injury. Fundam Clin Pharmacol 22:179–188

    Article  CAS  PubMed  Google Scholar 

  30. Banchroft J, Stevens A, Turner D (1996) Theory and practice of histological techniques. Churchil Livingstone, London, pp 257–262

    Google Scholar 

  31. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376

    Article  CAS  PubMed  Google Scholar 

  32. Vaibhav K, Shrivastava P, Tabassum R, Khan A, Javed H, Ahmed ME, Islam F, Safhi MM, Islam F (2013) Delayed administration of zingerone mitigates the behavioral and histological alteration via repression of oxidative stress and intrinsic programmed cell death in focal transient ischemic rats. Pharmacol Biochem Behav 113:53–62

    Article  CAS  PubMed  Google Scholar 

  33. Akhtar M, Maikiyo AM, Najmi AK, Khanam R, Mujeeb M, Aqil M (2013) Neuroprotective effects of chloroform and petroleum ether extracts of Nigella sativa seeds in stroke model of rat. J Pharm Bioallied Sci 5:119–125

    Article  PubMed Central  PubMed  Google Scholar 

  34. Katsuki H, Okuda S (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol 46:607–636

    Article  CAS  PubMed  Google Scholar 

  35. Ohtsuki T, Matsumoto M, Hayashi Y, Yamamoto K, Kitagawa K, Ogawa S, Yamamoto S, Kamada T (1995) Reperfusion induces 5-lipoxygenase translocation and leukotriene C4 production in ischemic brain. Am J Physiol 268:H1249–H1257

    CAS  PubMed  Google Scholar 

  36. Yang SL, Huang X, Chen HF, Xu D, Chen LJ, Kong Y, Lou YJ (2007) Increased leukotriene c4 synthesis accompanied enhanced leukotriene c4 synthase expression and activities of ischemia-reperfusion-injured liver in rats. J Surg Res 140:36–44

    Article  CAS  PubMed  Google Scholar 

  37. Hagar HH, Abd El Tawab R (2012) Cysteinyl leukotriene receptor antagonism alleviates renal injury induced by ischemia-reperfusion in rats. J Surg Res 178:e25–e34

    Article  CAS  PubMed  Google Scholar 

  38. Daglar G, Karaca T, Yuksek YN, Gozalan U, Akbiyik F, Sokmensuer C, Gurel B, Kama NA (2009) Effect of montelukast and MK-886 on hepatic ischemia-reperfusion injury in rats. J Surg Res 153:31–38

    Article  CAS  PubMed  Google Scholar 

  39. Luo Y, Yang YP, Liu J, Li WH, Yang J, Sui X, Yuan X, Nie ZY, Liu YQ, Chen D, Lin SH, WangYA (2014) Neuroprotective effects of madecassoside against focal cerebral ischemia reperfusion injury in rats. Brain Res

  40. Park JH, Park OK, Cho JH, Chen BH, Kim IH, Ahn JH, Lee JC, Yan BC, Yoo KY, Lee CH, Hwang IK, Kwon SH, Lee YL, Won MH, Choi JH (2014) Anti-inflammatory effect of tanshinone I in neuroprotection against cerebral ischemia-reperfusion injury in the gerbil hippocampus. Neurochem Res. doi:10.1007/s11064-014-1312-4

  41. Kawano T, Matsuse H, Tsuchida T, Fukahori S, Fukushima C, Nishino T, Kohno S (2014) Cysteinyl leukotriene receptor antagonist regulates allergic airway inflammation in an organ- and cytokine-specific manner. Med Sci Monit 20:297–302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yousefi B, Jadidi-Niaragh F, Azizi G, Hajighasemi F, Mirshafiey A (2014) The role of leukotrienes in immunopathogenesis of rheumatoid arthritis. Mod Rheumatol 24:225–235

    Article  CAS  PubMed  Google Scholar 

  43. Ni NC, Ballantyne LL, Mewburn JD, Funk CD (2014) Multiple-site activation of the cysteinyl leukotriene receptor 2 is required for exacerbation of ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol 34:321–330

    Article  CAS  PubMed  Google Scholar 

  44. Huber M, Beutler B, Keppler D (1988) Tumor necrosis factor alpha stimulates leukotriene production in vivo. Eur J Immunol 18:2085–2088

    Article  CAS  PubMed  Google Scholar 

  45. Kanda N, Watanabe S (2007) Leukotriene B(4) enhances tumour necrosis factor-alpha-induced CCL27 production in human keratinocytes. Clin Exp Allergy 37:1074–1082

    Article  CAS  PubMed  Google Scholar 

  46. Rola-Pleszczynski M, Stankova J (1992) Leukotriene B4 enhances interleukin-6 (IL-6) production and IL-6 messenger RNA accumulation in human monocytes in vitro: transcriptional and posttranscriptional mechanisms. Blood 80:1004–1011

    CAS  PubMed  Google Scholar 

  47. DiMeo D, Tian J, Zhang J, Narushima S, Berg DJ (2008) Increased interleukin-10 production and Th2 skewing in the absence of 5-lipoxygenase. Immunology 123:250–262

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Abdel-Raheem IT, Khedr NF (2014) Renoprotective effects of montelukast, a cysteinyl leukotriene receptor antagonist, against methotrexate-induced kidney damage in rats. Naunyn Schmiedebergs Arch Pharmacol 387:341–353

    Article  CAS  PubMed  Google Scholar 

  49. Al-Amran FG, Hadi NR, Hashim AM (2013) Cysteinyl leukotriene receptor antagonist montelukast ameliorates acute lung injury following haemorrhagic shock in rats. Eur J Cardiothorac Surg 43:421–427

    Article  PubMed  Google Scholar 

  50. Al-Amran FG, Hadi NR, Hashim AM (2011) Leukotriene biosynthesis inhibition ameliorates acute lung injury following hemorrhagic shock in rats. J Cardiothorac Surg 6:81

    Article  PubMed Central  PubMed  Google Scholar 

  51. Yuksel B, Aydemir C, Ustundag G, Eldes N, Kutsal E, Can M, Demirtas S, Tomac N (2009) The effect of treatment with montelukast on levels of serum interleukin-10, eosinophil cationic protein, blood eosinophil counts, and clinical parameters in children with asthma. Turk J Pediatr 51:460–465

    PubMed  Google Scholar 

  52. Wang L, Huang Y, Wu J, Lv G, Zhou L, Jia J (2013) Effect of Buyang Huanwu decoction on amino acid content in cerebrospinal fluid of rats during ischemic/reperfusion injury. J Pharm Biomed Anal 86:143–150

    Article  CAS  PubMed  Google Scholar 

  53. Cai Q, Wang HW, Hua SY, Tan JZ, Zhou T, Li CS (2012) Neutroprotective efficacy of sodium tanshinone B on hippocampus neuron in a rat model of focal cerebral ischemia. Chin J Integr Med 18:837–845

    Article  CAS  PubMed  Google Scholar 

  54. Ding Q, Wei EQ, Zhang YJ, Zhang WP, Chen Z (2006) Cysteinyl leukotriene receptor 1 is involved in N-methyl-D-aspartate-mediated neuronal injury in mice. Acta Pharmacol Sin 27:1526–1536

    Article  CAS  PubMed  Google Scholar 

  55. Ding Q, Fang SH, Zhou Y, Zhang LH, Zhang WP, Chen Z, Wei EQ (2007) Cysteinyl leukotriene receptor 1 partially mediates brain cryoinjury in mice. Acta Pharmacol Sin 28:945–952

    Article  CAS  PubMed  Google Scholar 

  56. Ciceri P, Rabuffetti M, Monopoli A, Nicosia S (2001) Production of leukotrienes in a model of focal cerebral ischaemia in the rat. Br J Pharmacol 133:1323–1329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Mabe H, Nagai H, Suzuka T (1990) Role of brain tissue leukotriene in brain oedema following cerebral ischaemia: effect of a 5-lipoxygenase inhibitor, AA-861. Neurol Res 12:165–168

    CAS  PubMed  Google Scholar 

  58. Ge QF, Hu X, Ma ZQ, Liu JR, Zhang WP, Chen Z, Wei EQ (2007) Baicalin attenuates oxygen-glucose deprivation-induced injury via inhibiting NMDA receptor-mediated 5-lipoxygenase activation in rat cortical neurons. Pharmacol Res 55:148–157

    Article  CAS  PubMed  Google Scholar 

  59. Knorr B, Franchi LM, Bisgaard H, Vermeulen JH, LeSouef P, Santanello N, Michele TM, Reiss TF, Nguyen HH, Bratton DL (2001) Montelukast, a leukotriene receptor antagonist, for the treatment of persistent asthma in children aged 2–5 years. Pediatrics 108:E48

    Article  CAS  PubMed  Google Scholar 

  60. Volovitz B, Tabachnik E, Nussinovitch M, Shtaif B, Blau H, Gil-Ad I, Weizman A, Varsano I (1999) Montelukast, a leukotriene receptor antagonist, reduces the concentration of leukotrienes in the respiratory tract of children with persistent asthma. J Allergy Clin Immunol 104:1162–1167

    Article  CAS  PubMed  Google Scholar 

  61. Nakamori Y, Komatsu Y, Kotani T, Kojima S, Takeuchi K (2010) Pathogenic importance of cysteinyl leukotrienes in development of gastric lesions induced by ischemia/reperfusion in mice. J Pharmacol Exp Ther 333:91–98

    Article  CAS  PubMed  Google Scholar 

  62. Fulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and cell death. Int J Cell Biol. doi:10.1155/2010/214074

  63. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) Cell death. N Engl J Med 361:1570–1583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Whelan RS, Kaplinskiy V, Kitsis RN (2010) Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 72:19–44

    Article  CAS  PubMed  Google Scholar 

  65. Gupta S, Kass GE, Szegezdi E, Joseph B (2009) The mitochondrial death pathway: a promising therapeutic target in diseases. J Cell Mol Med 13:1004–1033

    Article  CAS  PubMed  Google Scholar 

  66. Park S, Yoon J, Bae S, Park M, Kang C, Ke Q, Lee D, Kang PM (2014) Therapeutic use of HO-responsive anti-oxidant polymer nanoparticles for doxorubicin-induced cardiomyopathy. Biomaterials. doi:10.1016/j.biomaterials.2014.03.084

  67. Shi SS, Yang WZ, Chen Y, Chen JP, Tu XK (2014) Propofol reduces inflammatory reaction and ischemic brain damage in cerebral ischemia in rats. Neurochem Res 39:793–799

    Article  CAS  PubMed  Google Scholar 

  68. Dief AE, Kamha ES, Baraka AM, Elshorbagy AK (2014) Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: a potential role for cyclic AMP protein kinase. Neurotoxicology. doi:10.1016/j.neuro.2014.04.003

  69. Korniichuk HM, Makohon NV, Aleksieieva IM, Lushnikova IV (2002) Effect of exogenous leukotrienes and lipoxygenase inhibitors on apoptosis and necrosis in cultured rat hepatocytes. Fiziol Zh 48:34–40

    CAS  PubMed  Google Scholar 

  70. Becher UM, Ghanem A, Tiyerili V, Furst DO, Nickenig G, Mueller CF (2011) Inhibition of leukotriene C4 action reduces oxidative stress and apoptosis in cardiomyocytes and impedes remodeling after myocardial injury. J Mol Cell Cardiol 50:570–577

    Article  CAS  PubMed  Google Scholar 

  71. Lai J, Hu M, Wang H, Hu M, Long Y, Miao MX, Li JC, Wang XB, Kong LY, Hong H (2014) Montelukast targeting the cysteinyl leukotriene receptor 1 ameliorates Abeta1-42-induced memory impairment and neuroinflammatory and apoptotic responses in mice. Neuropharmacology 79:707–714

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was funded by the Faculty of Pharmacy Cairo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Saad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, M.A., Abdelsalam, R.M., Kenawy, S.A. et al. Montelukast, a Cysteinyl Leukotriene Receptor-1 Antagonist Protects Against Hippocampal Injury Induced by Transient Global Cerebral Ischemia and Reperfusion in Rats. Neurochem Res 40, 139–150 (2015). https://doi.org/10.1007/s11064-014-1478-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1478-9

Keywords

Navigation