Skip to main content

Advertisement

Log in

Genetic Dys-regulation of Astrocytic Glutamate Transporter EAAT2 and its Implications in Neurological Disorders and Manganese Toxicity

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytic glutamate transporters, the excitatory amino acid transporter (EAAT) 2 and EAAT1 (glutamate transporter 1 and glutamate aspartate transporter in rodents, respectively), are the main transporters for maintaining optimal glutamate levels in the synaptic clefts by taking up more than 90 % of glutamate from extracellular space thus preventing excitotoxic neuronal death. Reduced expression and function of these transporters, especially EAAT2, has been reported in numerous neurological disorders, including amyotrophic lateral sclerosis, Alzheimer’s disease, Parkinson’s disease, schizophrenia and epilepsy. The mechanism of down-regulation of EAAT2 in these diseases has yet to be fully established. Genetic as well as transcriptional dys-regulation of these transporters by various modes, such as single nucleotide polymorphisms and epigenetics, resulting in impairment of their functions, might play an important role in the etiology of neurological diseases. Consequently, there has been an extensive effort to identify molecular targets for enhancement of EAAT2 expression as a potential therapeutic approach. Several pharmacological agents increase expression of EAAT2 via nuclear factor κB and cAMP response element binding protein at the transcriptional level. However, the negative regulatory mechanisms of EAAT2 have yet to be identified. Recent studies, including those from our laboratory, suggest that the transcriptional factor yin yang 1 plays a critical role in the repressive effects of various neurotoxins, such as manganese (Mn), on EAAT2 expression. In this review, we will focus on transcriptional epigenetics and translational regulation of EAAT2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Chai L, Guo H, Li H, Wang S, Wang YL, Shi F, Hu LM, Liu Y, Adah D (2013) Scutellarin and caffeic acid ester fraction, active components of Dengzhanxixin injection, upregulate neurotrophins synthesis and release in hypoxia/reoxygenation rat astrocytes. J Ethnopharmacol 150:100–107

    CAS  PubMed  Google Scholar 

  2. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Platt SR (2007) The role of glutamate in central nervous system health and disease–a review. Vet J 173:278–286 (London, England: 1997)

    CAS  PubMed  Google Scholar 

  4. Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24:107–129

    CAS  PubMed  Google Scholar 

  5. Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81:163–221

    CAS  PubMed  Google Scholar 

  6. Furuta A, Rothstein JD, Martin LJ (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 17:8363–8375

    CAS  PubMed  Google Scholar 

  7. Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–1853

    CAS  PubMed  Google Scholar 

  8. Tanaka K (2000) Functions of glutamate transporters in the brain. Neurosci Res 37:15–19

    CAS  PubMed  Google Scholar 

  9. Bristol LA, Rothstein JD (1996) Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Ann Neurol 39:676–679

    CAS  PubMed  Google Scholar 

  10. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    CAS  PubMed  Google Scholar 

  11. Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P, Reed JC, Stebbins JL, Pellecchia M, Sarkar D, Fisher PB (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226:2484–2493

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84

    CAS  PubMed  Google Scholar 

  13. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    CAS  PubMed  Google Scholar 

  14. Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM, Bergles DE, Rothstein JD (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 27:6607–6619

    CAS  PubMed  Google Scholar 

  15. Lin CL, Kong Q, Cuny GD, Glicksman MA (2012) Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med Chem 4:1689–1700

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Abdul HM, Sama MA, Furman JL, Mathis DM, Beckett TL, Weidner AM, Patel ES, Baig I, Murphy MP, LeVine H 3rd, Kraner SD, Norris CM (2009) Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci 29:12957–12969

    PubMed Central  PubMed  Google Scholar 

  17. Liang Z, Valla J, Sefidvash-Hockley S, Rogers J, Li R (2002) Effects of estrogen treatment on glutamate uptake in cultured human astrocytes derived from cortex of Alzheimer’s disease patients. J Neurochem 80:807–814

    PubMed  Google Scholar 

  18. Mallolas J, Hurtado O, Castellanos M, Blanco M, Sobrino T, Serena J, Vivancos J, Castillo J, Lizasoain I, Moro MA, Davalos A (2006) A polymorphism in the EAAT2 promoter is associated with higher glutamate concentrations and higher frequency of progressing stroke. J Exp Med 203:711–717

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Meyer T, Munch C, Liebau S, Fromm A, Schwalenstocker B, Volkel H, Ludolph AC (1998) Splicing of the glutamate transporter EAAT2: a candidate gene of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 65:954

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Hoberg MD, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    CAS  PubMed  Google Scholar 

  21. Lee E, Sidoryk-Wegrzynowicz M, Yin Z, Webb A, Son DS, Aschner M (2012) Transforming growth factor-alpha mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes. Glia 60:1024–1036

    PubMed Central  PubMed  Google Scholar 

  22. Karki P, Webb A, Smith K, Lee K, Son DS, Aschner M, Lee E (2013) cAMP response element-binding protein (CREB) and nuclear factor kappaB mediate the tamoxifen-induced up-regulation of glutamate transporter 1 (GLT-1) in rat astrocytes. J Biol Chem 288:28975–28986

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Carbone M, Duty S, Rattray M (2012) Riluzole elevates GLT-1 activity and levels in striatal astrocytes. Neurochem Int 60:31–38

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Lee SG, Su ZZ, Emdad L, Gupta P, Sarkar D, Borjabad A, Volsky DJ, Fisher PB (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem 283:13116–13123

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Rosas S, Vargas MA, Lopez-Bayghen E, Ortega A (2007) Glutamate-dependent transcriptional regulation of GLAST/EAAT1: a role for YY1. J Neurochem 101:1134–1144

    CAS  PubMed  Google Scholar 

  26. Lee SG, Kim K, Kegelman TP, Dash R, Das SK, Choi JK, Emdad L, Howlett EL, Jeon HY, Su ZZ, Yoo BK, Sarkar D, Kim SH, Kang DC, Fisher PB (2011) Oncogene AEG-1 promotes glioma-induced neurodegeneration by increasing glutamate excitotoxicity. Cancer Res 71:6514–6523

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Karki P, Webb A, Smith K, Johnson J Jr, Lee K, Son DS, Aschner M, Lee E (2014) Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes. Mol Cell Biol 34:1280–1289

    PubMed Central  PubMed  Google Scholar 

  28. Honig LS, Chambliss DD, Bigio EH, Carroll SL, Elliott JL (2000) Glutamate transporter EAAT2 splice variants occur not only in ALS, but also in AD and controls. Neurology 55:1082–1088

    CAS  PubMed  Google Scholar 

  29. Meyer T, Fromm A, Munch C, Schwalenstocker B, Fray AE, Ince PG, Stamm S, Gron G, Ludolph AC, Shaw PJ (1999) The RNA of the glutamate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals. J Neurol Sci 170:45–50

    CAS  PubMed  Google Scholar 

  30. Munch C, Zhu BG, Mink A, Seefried U, Riepe MW, Ludolph AC, Meyer T (2008) Chemical hypoxia facilitates alternative splicing of EAAT2 in presymptomatic APP23 transgenic mice. Neurochem Res 33:1005–1010

    PubMed  Google Scholar 

  31. Tian G, Lai L, Guo H, Lin Y, Butchbach ME, Chang Y, Lin CL (2007) Translational control of glial glutamate transporter EAAT2 expression. J Biol Chem 282:1727–1737

    CAS  PubMed  Google Scholar 

  32. Holmseth S, Scott HA, Real K, Lehre KP, Leergaard TB, Bjaalie JG, Danbolt NC (2009) The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience 162:1055–1071

    CAS  PubMed  Google Scholar 

  33. Munch C, Penndorf A, Schwalenstocker B, Troost D, Ludolph AC, Ince P, Meyer T (2001) Impaired RNA splicing of 5′-regulatory sequences of the astroglial glutamate transporter EAAT2 in human astrocytoma. J Neurol Neurosurg Psychiatry 71:675–678

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Pampliega O, Domercq M, Villoslada P, Sepulcre J, Rodriguez-Antiguedad A, Matute C (2008) Association of an EAAT2 polymorphism with higher glutamate concentration in relapsing multiple sclerosis. J Neuroimmunol 195:194–198

    CAS  PubMed  Google Scholar 

  35. Matsumoto Y, Suzuki A, Ishii G, Oshino S, Otani K, Goto K (2007) The −181 A/C polymorphism in the excitatory amino acid transporter-2 gene promoter affects the personality trait of reward dependence in healthy subjects. Neurosci Lett 427:99–102

    CAS  PubMed  Google Scholar 

  36. Spangaro M, Bosia M, Zanoletti A, Bechi M, Cocchi F, Pirovano A, Lorenzi C, Bramanti P, Benedetti F, Smeraldi E, Cavallaro R (2012) Cognitive dysfunction and glutamate reuptake: effect of EAAT2 polymorphism in schizophrenia. Neurosci Lett 522:151–155

    CAS  PubMed  Google Scholar 

  37. Dallaspezia S, Poletti S, Lorenzi C, Pirovano A, Colombo C, Benedetti F (2012) Influence of an interaction between lithium salts and a functional polymorphism in SLC1A2 on the history of illness in bipolar disorder. Mol Diagn Ther 16:303–309

    CAS  PubMed  Google Scholar 

  38. Poletti S, Radaelli D, Bosia M, Buonocore M, Pirovano A, Lorenzi C, Cavallaro R, Smeraldi E, Benedetti F (2014) Effect of glutamate transporter EAAT2 gene variants and gray matter deficits on working memory in schizophrenia. Eur Psychiatry 29:219–225

    CAS  PubMed  Google Scholar 

  39. Deng X, Shibata H, Ninomiya H, Tashiro N, Iwata N, Ozaki N, Fukumaki Y (2004) Association study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia. BMC psychiatry 4:21

    PubMed Central  PubMed  Google Scholar 

  40. Kerdsan W, Thanoi S, Nudmamud-Thanoi S, Reynolds GP (2012) An association between genotypic variations and protein expression of the glial glutamate transporter 2 in the human nucleus accumbens. Neurosci Lett 523:108–110

    CAS  PubMed  Google Scholar 

  41. Foley PF, Loh EW, Innes DJ, Williams SM, Tannenberg AE, Harper CG, Dodd PR (2004) Association studies of neurotransmitter gene polymorphisms in alcoholic Caucasians. Ann N Y Acad Sci 1025:39–46

    CAS  PubMed  Google Scholar 

  42. Sander T, Ostapowicz A, Samochowiec J, Smolka M, Winterer G, Schmidt LG (2000) Genetic variation of the glutamate transporter EAAT2 gene and vulnerability to alcohol dependence. Psychiatr Genet 10:103–107

    CAS  PubMed  Google Scholar 

  43. Wu J, Lee MR, Choi S, Kim T, Choi DS (2010) ENT1 regulates ethanol-sensitive EAAT2 expression and function in astrocytes. Alcohol Clin Exp Res 34:1110–1117

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Su ZZ, Leszczyniecka M, Kang DC, Sarkar D, Chao W, Volsky DJ, Fisher PB (2003) Insights into glutamate transport regulation in human astrocytes: cloning of the promoter for excitatory amino acid transporter 2 (EAAT2). Proc Natl Acad Sci USA 100:1955–1960

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Karki P, Webb A, Zerguine A, Choi J, Son DS, Lee E (2014) Mechanism of raloxifene-induced upregulation of glutamate transporters in rat primary astrocytes. Glia 62:1270–1283

  46. Sitcheran R, Gupta P, Fisher PB, Baldwin AS (2005) Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. EMBO J 24:510–520

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Gegelashvili G, Danbolt NC, Schousboe A (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J Neurochem 69:2612–2615

    CAS  PubMed  Google Scholar 

  48. Schlag BD, Vondrasek JR, Munir M, Kalandadze A, Zelenaia OA, Rothstein JD, Robinson MB (1998) Regulation of the glial Na+ -dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53:355–369

    CAS  PubMed  Google Scholar 

  49. Ghosh M, Yang Y, Rothstein JD, Robinson MB (2011) Nuclear factor-kappaB contributes to neuron-dependent induction of glutamate transporter-1 expression in astrocytes. J Neurosci 31:9159–9169

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Yang Y, Gozen O, Watkins A, Lorenzini I, Lepore A, Gao Y, Vidensky S, Brennan J, Poulsen D, Won Park J, Li Jeon N, Robinson MB, Rothstein JD (2009) Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron 61:880–894

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Lee E, Sidoryk-Wegrzynowicz M, Wang N, Webb A, Son DS, Lee K, Aschner M (2012) GPR30 regulates glutamate transporter GLT-1 expression in rat primary astrocytes. J Biol Chem 287:26817–26828

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Callier S, Morissette M, Grandbois M, Pelaprat D, Di Paolo T (2001) Neuroprotective properties of 17beta-estradiol, progesterone, and raloxifene in MPTP C57Bl/6 mice. Synapse 41:131–138 (New York, NY)

    CAS  PubMed  Google Scholar 

  53. Lee ES, Yin Z, Milatovic D, Jiang H, Aschner M (2009) Estrogen and tamoxifen protect against Mn-induced toxicity in rat cortical primary cultures of neurons and astrocytes. Toxicol Sci 110:156–167

    PubMed Central  CAS  PubMed  Google Scholar 

  54. O’Neill K, Chen S, Brinton RD (2004) Impact of the selective estrogen receptor modulator, raloxifene, on neuronal survival and outgrowth following toxic insults associated with aging and Alzheimer’s disease. Exp Neurol 185:63–80

    PubMed  Google Scholar 

  55. Tian DS, Liu JL, Xie MJ, Zhan Y, Qu WS, Yu ZY, Tang ZP, Pan DJ, Wang W (2009) Tamoxifen attenuates inflammatory-mediated damage and improves functional outcome after spinal cord injury in rats. J Neurochem 109:1658–1667

    CAS  PubMed  Google Scholar 

  56. Wakade C, Khan MM, De Sevilla LM, Zhang QG, Mahesh VB, Brann DW (2008) Tamoxifen neuroprotection in cerebral ischemia involves attenuation of kinase activation and superoxide production and potentiation of mitochondrial superoxide dismutase. Endocrinology 149:367–379

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Li LB, Toan SV, Zelenaia O, Watson DJ, Wolfe JH, Rothstein JD, Robinson MB (2006) Regulation of astrocytic glutamate transporter expression by Akt: evidence for a selective transcriptional effect on the GLT-1/EAAT2 subtype. J Neurochem 97:759–771

    CAS  PubMed  Google Scholar 

  58. Gordon S, Akopyan G, Garban H, Bonavida B (2006) Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 25:1125–1142

    CAS  PubMed  Google Scholar 

  59. Shi Y, Lee JS, Galvin KM (1997) Everything you have ever wanted to know about Yin Yang 1. Biochim Biophys Acta 1332:F49–F66

    CAS  PubMed  Google Scholar 

  60. He Y, Casaccia-Bonnefil P (2008) The Yin and Yang of YY1 in the nervous system. J Neurochem 106:1493–1502

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Nowak K, Lange-Dohna C, Zeitschel U, Gunther A, Luscher B, Robitzki A, Perez-Polo R, Rossner S (2006) The transcription factor Yin Yang 1 is an activator of BACE1 expression. J Neurochem 96:1696–1707

    CAS  PubMed  Google Scholar 

  62. Forlani G, Giarda E, Ala U, Di Cunto F, Salani M, Tupler R, Kilstrup-Nielsen C, Landsberger N (2010) The MeCP2/YY1 interaction regulates ANT1 expression at 4q35: novel hints for Rett syndrome pathogenesis. Hum Mol Genet 19:3114–3123

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Ratajewski M, Pulaski L (2009) YY1-dependent transcriptional regulation of the human GDAP1 gene. Genomics 94:407–413

    CAS  PubMed  Google Scholar 

  64. Perisic T, Zimmermann N, Kirmeier T, Asmus M, Tuorto F, Uhr M, Holsboer F, Rein T, Zschocke J (2010) Valproate and amitriptyline exert common and divergent influences on global and gene promoter-specific chromatin modifications in rat primary astrocytes. Neuropsychopharmacology 35:792–805

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Johnson AA, Akman K, Calimport SR, Wuttke D, Stolzing A, de Magalhaes JP (2012) The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation res 15:483–494

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Jowaed A, Schmitt I, Kaut O, Wullner U (2010) Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci 30:6355–6359

    CAS  PubMed  Google Scholar 

  67. Rao JS, Keleshian VL, Klein S, Rapoport SI (2012) Epigenetic modifications in frontal cortex from Alzheimer’s disease and bipolar disorder patients. Transl Psychiatry 2:e132

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Poulter MO, Du L, Weaver IC, Palkovits M, Faludi G, Merali Z, Szyf M, Anisman H (2008) GABAA receptor promoter hypermethylation in suicide brain: implications for the involvement of epigenetic processes. Biol Psychiatry 64:645–652

    CAS  PubMed  Google Scholar 

  69. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M, Turecki G, Meaney MJ (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–525

    CAS  PubMed  Google Scholar 

  71. Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20:615–626

    CAS  PubMed  Google Scholar 

  72. Itoh M, Hiroi T, Nishibori N, Sagara T, Her S, Lee MS, Morita K (2013) Trichostatin A enhances glutamate transporter GLT-1 mRNA levels in C6 glioma cells via neurosteroid-mediated cell differentiation. J Mol Neurosci 49:21–27

    CAS  PubMed  Google Scholar 

  73. Hobo S, Eisenach JC, Hayashida K (2011) Up-regulation of spinal glutamate transporters contributes to anti-hypersensitive effects of valproate in rats after peripheral nerve injury. Neurosci Lett 502:52–55

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Yang Y, Gozen O, Vidensky S, Robinson MB, Rothstein JD (2010) Epigenetic regulation of neuron-dependent induction of astroglial synaptic protein GLT1. Glia 58:277–286

    PubMed Central  PubMed  Google Scholar 

  75. Zschocke J, Allritz C, Engele J, Rein T (2007) DNA methylation dependent silencing of the human glutamate transporter EAAT2 gene in glial cells. Glia 55:663–674

    PubMed  Google Scholar 

  76. Perisic T, Holsboer F, Rein T, Zschocke J (2012) The CpG island shore of the GLT-1 gene acts as a methylation-sensitive enhancer. Glia 60:1345–1355

    PubMed  Google Scholar 

  77. Zschocke J, Bayatti N, Clement AM, Witan H, Figiel M, Engele J, Behl C (2005) Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. J Biol Chem 280:34924–34932

    CAS  PubMed  Google Scholar 

  78. Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8:74–84

    CAS  PubMed  Google Scholar 

  79. Huang K, Kang MH, Askew C, Kang R, Sanders SS, Wan J, Davis NG, Hayden MR (2010) Palmitoylation and function of glial glutamate transporter-1 is reduced in the YAC128 mouse model of Huntington disease. Neurobiol Dis 40:207–215

    CAS  PubMed  Google Scholar 

  80. Foran E, Rosenblum L, Bogush A, Pasinelli P, Trotti D (2014) Sumoylation of the astroglial glutamate transporter EAAT2 governs its intracellular compartmentalization. Glia 62:1241–1253

    CAS  PubMed  Google Scholar 

  81. Foran E, Bogush A, Goffredo M, Roncaglia P, Gustincich S, Pasinelli P, Trotti D (2011) Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. Glia 59:1719–1731

    PubMed Central  PubMed  Google Scholar 

  82. Dangoumau A, Veyrat-Durebex C, Blasco H, Praline J, Corcia P, Andres CR, Vourc’h P (2013) Protein SUMOylation, an emerging pathway in amyotrophic lateral sclerosis. Int J Neurosci 123:366–374

    CAS  PubMed  Google Scholar 

  83. Sheldon AL, Gonzalez MI, Krizman-Genda EN, Susarla BT, Robinson MB (2008) Ubiquitination-mediated internalization and degradation of the astroglial glutamate transporter, GLT-1. Neurochem Int 53:296–308

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Gonzalez-Gonzalez IM, Garcia-Tardon N, Gimenez C, Zafra F (2008) PKC-dependent endocytosis of the GLT1 glutamate transporter depends on ubiquitylation of lysines located in a C-terminal cluster. Glia 56:963–974

    PubMed  Google Scholar 

  85. Martinez-Villarreal J, Garcia Tardon N, Ibanez I, Gimenez C, Zafra F (2012) Cell surface turnover of the glutamate transporter GLT-1 is mediated by ubiquitination/deubiquitination. Glia 60:1356–1365

    PubMed  Google Scholar 

  86. Erikson K, Aschner M (2002) Manganese causes differential regulation of glutamate transporter (GLAST) taurine transporter and metallothionein in cultured rat astrocytes. Neurotoxicology 23:595–602

    CAS  PubMed  Google Scholar 

  87. Hazell AS, Norenberg MD (1997) Manganese decreases glutamate uptake in cultured astrocytes. Neurochem Res 22:1443–1447

    CAS  PubMed  Google Scholar 

  88. Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Aspects Med 26:353–362

    CAS  PubMed  Google Scholar 

  89. Huang CC, Chu NS, Lu CS, Wang JD, Tsai JL, Tzeng JL, Wolters EC, Calne DB (1989) Chronic manganese intoxication. Arch Neurol 46:1104–1106

    CAS  PubMed  Google Scholar 

  90. Bowman AB, Kwakye GF, Herrero Hernandez E, Aschner M (2011) Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 25:191–203

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Milatovic D, Yin Z, Gupta RC, Sidoryk M, Albrecht J, Aschner JL, Aschner M (2007) Manganese induces oxidative impairment in cultured rat astrocytes. Toxicol Sci 98:198–205

    CAS  PubMed  Google Scholar 

  92. Milatovic D, Zaja-Milatovic S, Gupta RC, Yu Y, Aschner M (2009) Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol Appl Pharmacol 240:219–225

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Rao KV, Norenberg MD (2004) Manganese induces the mitochondrial permeability transition in cultured astrocytes. J Biol Chem 279:32333–32338

    CAS  PubMed  Google Scholar 

  94. Brouillet EP, Shinobu L, McGarvey U, Hochberg F, Beal MF (1993) Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol 120:89–94

    CAS  PubMed  Google Scholar 

  95. Chen CJ, Liao SL (2002) Oxidative stress involves in astrocytic alterations induced by manganese. Exp Neurol 175:216–225

    CAS  PubMed  Google Scholar 

  96. Filipov NM, Dodd CA (2012) Role of glial cells in manganese neurotoxicity. J Appl Toxicol 32:310–317

    CAS  PubMed  Google Scholar 

  97. Filipov NM, Seegal RF, Lawrence DA (2005) Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor kappa B-dependent mechanism. Toxicol Sci 84:139–148

    CAS  PubMed  Google Scholar 

  98. Liu M, Cai T, Zhao F, Zheng G, Wang Q, Chen Y, Huang C, Luo W, Chen J (2009) Effect of microglia activation on dopaminergic neuronal injury induced by manganese, and its possible mechanism. Neurotox Res 16:42–49

    CAS  PubMed  Google Scholar 

  99. Liu X, Sullivan KA, Madl JE, Legare M, Tjalkens RB (2006) Manganese-induced neurotoxicity: the role of astroglial-derived nitric oxide in striatal interneuron degeneration. Toxicol Sci 91:521–531

    CAS  PubMed  Google Scholar 

  100. Korn T, Magnus T, Jung S (2005) Autoantigen specific T cells inhibit glutamate uptake in astrocytes by decreasing expression of astrocytic glutamate transporter GLAST: a mechanism mediated by tumor necrosis factor-alpha. FASEB J 19:1878–1880

    CAS  PubMed  Google Scholar 

  101. Szymocha R, Akaoka H, Dutuit M, Malcus C, Didier-Bazes M, Belin MF, Giraudon P (2000) Human T-cell lymphotropic virus type 1-infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via Tax-1 and tumor necrosis factor alpha. J Virol 74:6433–6441

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Wang Z, Pekarskaya O, Bencheikh M, Chao W, Gelbard HA, Ghorpade A, Rothstein JD, Volsky DJ (2003) Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120. Virology 312:60–73

    CAS  PubMed  Google Scholar 

  103. Lee E, Yin Z, Sidoryk-Wegrzynowicz M, Jiang H, Aschner M (2012) 15-Deoxy-Delta12,14-prostaglandin J(2) modulates manganese-induced activation of the NF-kappaB, Nrf2, and PI3 K pathways in astrocytes. Free Radical Biol Med 52:1067–1074

    CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported in part by NIH Grants, NIGMS SC1089630 (EL) and R01ES10563 and R01ES10563S1 (MA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunsook Y. Lee.

Additional information

Special Issue: In honor of Michael Norenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karki, P., Smith, K., Johnson, J. et al. Genetic Dys-regulation of Astrocytic Glutamate Transporter EAAT2 and its Implications in Neurological Disorders and Manganese Toxicity. Neurochem Res 40, 380–388 (2015). https://doi.org/10.1007/s11064-014-1391-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1391-2

Keywords

Navigation