Skip to main content
Log in

Analysis of γ-Aminobutyric Acid (GABA) Type A Receptor Subtypes Using Isosteric and Allosteric Ligands

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The GABAA receptors (GABAARs) play an important role in inhibitory transmission in the brain. The GABAARs could be identified using a medicinal chemistry approach to characterize with a series of chemical structural analogues, some identified in nature, some synthesized, to control the structural conformational rigidity/flexibility so as to define the ‘receptor-specific’ GABA agonist ligand structure. In addition to the isosteric site ligands, these ligand-gated chloride ion channel proteins exhibited modulation by several chemotypes of allosteric ligands, that help define structure and function. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABAARs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Also in the trans-membrane domain are allosteric modulatory ligand sites, mostly positive, for diverse chemotypes with general anesthetic efficacy, namely, the volatile and intravenous agents: barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are apparent endogenous positive allosteric modulators of GABAARs. These binding sites depend on the GABAAR heteropentameric subunit composition, i.e., subtypes. Two classes of pharmacologically very important allosteric modulatory ligand binding site reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site, and the low-dose ethanol site. The benzodiazepine site is specific for certain subunit combination subtypes, mainly synaptically localized. In contrast, the low-dose (high affinity) ethanol site(s) is found at a modified benzodiazepine site on different, extrasynaptic, subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roberts E, Chase TN, Tower D (eds) (1975) GABA in nervous system function. Raven Press, New York

    Google Scholar 

  2. Tanaka C, Bowery NG (eds) (1996) GABA: receptors, transporters, and metabolism. Birkhäuser Verlag, Basel

    Google Scholar 

  3. Enna SJ (ed) (1983) The GABA receptors. Humana Press, Totowa

    Google Scholar 

  4. Bowery NG (2000) GABAB receptors: structure and function. In: Martin DL, Olsen RW (eds) GABA in the nervous system: the view at fifty years. Lippincott Williams & Wilkins, Philadelphia, pp 233–244

    Google Scholar 

  5. Roberts E (1986) The road to neurotansmitter status. In: Olsen RW, Venter JC (eds) Benzodiazepine/GABA receptors and chloride channels: structural and functional properties., Receptor biochemistry and methodology, vol 5Alan R Liss, NY, pp 1–39

    Google Scholar 

  6. Barnard EA, Skolnick P, Olsen RW, Möhler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) International Union of Pharmacology. XV. Subtypes of GABAA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–313

    PubMed  CAS  Google Scholar 

  7. Rudolph U, Möhler H (2014) GABAA receptor subtypes: therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism. Annu Rev Pharmacol Toxicol 54:483–507

    PubMed  CAS  Google Scholar 

  8. Krogsgaard-Larsen P, Honore T, Thyssen K (1979) GABA receptor agonists: design and structure–activity studies. In: Kofod H, Krogsgaard-Larsen P, Scheel-Krüger J (eds) GABA-Neurotransmitters. Munksgaard, Copenhagen, pp 201–216

    Google Scholar 

  9. Christopoulos A, Changeux J-P, Catterall WA, Febbro D, Burns TP, Cidlowski JA, Olsen RW, Peters JA, Neubig RR, Pin J-P, Sexton PM, Kenyakin TP, Ehlert FJ, Spedding M, Langmead CJ (2014) International Union of Basic and Clinical Pharmacology. Multi-site pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol Rev (in press)

  10. Curtis DR, Johnston GA (1974) Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol 69:97–188

    PubMed  CAS  Google Scholar 

  11. Wallner M, Hanchar HJ, Olsen RW (2006) Low dose acute alcohol effects on GABAA receptor subtypes. Pharmacol Ther 112:513–528

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Paton WDM (1970) Receptors as defined by their pharmacological properties. In: Porter R, O’Conner M (eds) Molecular properties of drug receptors. Ciba Foundation Symposium. J. & A. Churchill, pp 3–32

  13. O’Brien RD (ed) (1979) The receptors: a comprehensive treatise. Plenum Press, New York

    Google Scholar 

  14. Enna SJ, Snyder SH (1975) Properties of γ-aminobutyric acid (GABA) receptor binding in rat brain synaptic membrane fractions. Brain Res 100:81–97

    PubMed  CAS  Google Scholar 

  15. Yamamura HI, Enna SJ, Kuhar MJ (eds) (1978) Neurotransmitter receptor binding. Raven, New York

    Google Scholar 

  16. Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011–1014

    PubMed  CAS  Google Scholar 

  17. Zukin SR, Young AB, Snyder SH (1974) Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc Natl Acad Sci USA 71:4802–4807

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Egebjerg J, Schousboe A, Krogsgaard-Larsen P (eds) (2002) Glutamate and GABA receptors and transporters: structure, function and pharmacology. Taylor & Francis, London

    Google Scholar 

  19. Johnston GAR, Allan RD, Kennedy SME, Twitchin B (1979) Systematic study of GABA analogues of restricted conformation. In: Kofod H, Krogsgaard-Larsen P, Scheel-Krüger J (eds) GABA-Neurotransmitters. Munksgaard, Copenhagen, pp 149–164

    Google Scholar 

  20. Krogsgaard-Larsen P, Johnston GA (1978) Structure–activity studies on the inhibition of GABA binding to rat brain membranes by muscimol and related compounds. J Neurochem 30:1377–1382

    PubMed  CAS  Google Scholar 

  21. Greenlee DV, Van Ness PC, Olsen RW (1978) Gamma-aminobutyric acid binding in mammalian brain: receptor-like specificity of sodium-independent sites. J Neurochem 31:933–938

    PubMed  CAS  Google Scholar 

  22. Olsen RW, Ticku MK, Greenlee D, Van Ness P (1979) GABA receptor and ionophore binding sites: interaction with various drugs. In: Kofod H, Krogsgaard-Larsen P, Scheel-Krüger J (eds) GABA-Neurotransmitters. Munksgaard, Copenhagen, pp 165–178

    Google Scholar 

  23. Olsen RW, Bergman MO, Van Ness PC, Lummis SC, Watkins AE, Napias C, Greenlee DV (1981) γ-Aminobutyric acid receptor binding in mammalian brain: heterogeneity of binding sites. Mol Pharmacol 19:217–227

    PubMed  CAS  Google Scholar 

  24. Curtis DR, Duggan AW, Felix D, Johnston GA (1970) Bicuculline and central GABA receptors. Nature 228:676–677

    PubMed  CAS  Google Scholar 

  25. Wermuth CG, Biziere K (1986) Pyridazinyl-GABA derivatives: a new class of synthetic GABAA antagonists. Trends Pharmacol Sci 7:421–424

    CAS  Google Scholar 

  26. Olsen RW (1982) Drug interactions at the GABA receptor–ionophore complex. Annu Rev Pharmacol Toxicol 22:245–277

    PubMed  CAS  Google Scholar 

  27. Johnston GA (1983) Regulation of GABA receptors by barbiturates and by related sedative-hypnotic and anticonvulsant drugs. In: Enna SJ (ed) The GABA receptors. Humana Press, Humana, pp 108–128

    Google Scholar 

  28. Macdonald RL, Olsen RW (1994) GABA-A receptor channels. Annu Rev Neurosci 17:569–602

    PubMed  CAS  Google Scholar 

  29. Johnston GAR (1997) GABAC receptors: molecular biology, pharmacology, and physiology. In: Enna SJ, Bowery NG (eds) The GABA receptors, vol 2. Humana Press, Totowa, pp 297–323

    Google Scholar 

  30. Ng CK, Kim HL, Gavande N, Yamamoto I, Kumar RJ, Mewett KN, Johnston GA, Hanrahan JR, Chebib M (2011) Medicinal chemistry of rho GABAC receptors. Future Med Chem 3:197–209

    PubMed  CAS  Google Scholar 

  31. Johnston GAR (2000) GABA chemistry: analogs of GABA as therapeutic and investigational agents. In: Martin DL, Olsen RW (eds) GABA in the nervous system: the view at fifty years. Lippincott Williams & Wilkins, Philadelphia, pp 65–80

    Google Scholar 

  32. Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of GABAA receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60:243–260

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Gavish M, Snyder SH (1980) Benzodiazepine recognition sites on GABA receptors. Nature 287:651–652

    PubMed  CAS  Google Scholar 

  34. Sigel E, Barnard EA (1984) A γ-aminobutyric acid/benzodiazepine receptor complex from bovine cerebral cortex. Improved purification with preservation of regulatory sites and their interactions. J Biol Chem 259:7219–7223

    PubMed  CAS  Google Scholar 

  35. Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, Glencorse TA, Seeburg PH, Barnard EA (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328:221–227

    PubMed  CAS  Google Scholar 

  36. Olsen RW, Homanics GE (2000) Function of GABAA receptors. Insights from mutant and knockout mice. In: Martin DL, Olsen RW (eds) GABA in the nervous system: the view at fifty years. Lippincourt Williams & Wilkens, Philadelphia, pp 81–96

  37. Whiting PJ (2003) GABAA receptor subtypes in the brain: a paradigm for CNS drug discovery? Drug Discov Today 8:445–450

    PubMed  CAS  Google Scholar 

  38. Rudolph U, Möhler H (2004) Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol 44:475–498

    PubMed  CAS  Google Scholar 

  39. Hevers W, Luddens H (1998) The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol Neurobiol 18:35–86

    PubMed  CAS  Google Scholar 

  40. Sander T, Frolund B, Bruun AT, Ivanov I, McCammon JA, Balle T (2011) New insights into the GABAA receptor structure and orthosteric ligand binding: receptor modeling guided by experimental data. Proteins 79:1458–1477

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Bai D, Zhu G, Pennefather P, Jackson MF, MacDonald JF, Orser BA (2001) Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by GABAA receptors in hippocampal neurons. Mol Pharmacol 59:814–824

    PubMed  CAS  Google Scholar 

  42. Mody I (2001) Distinguishing between GABAA receptors responsible for tonic and phasic conductances. Neurochem Res 26:907–913

    PubMed  CAS  Google Scholar 

  43. Wallner M, Hanchar HJ, Olsen RW (2003) Ethanol enhances α4β3δ and α6β3δ GABAA receptors at low concentrations known to affect humans. Proc Natl Acad Sci USA 100:15218–15223

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Storustovu S, Ebert B (2006) Pharmacological characterisation of agonists at δ-containing GABAA receptors: functional selectivity for extrasynaptic receptors is dependent on absence of γ2. J Pharmacol Exp Ther 316:1351–1359

    PubMed  CAS  Google Scholar 

  45. Jia F, Yue M, Chandra D, Keramidas A, Goldstein PA, Homanics GE, Harrison NL (2008) Taurine is a potent activator of extrasynaptic GABAA receptors in the thalamus. J Neurosci 28:106–115

    PubMed  CAS  Google Scholar 

  46. Mortensen M, Ebert B, Wafford K, Smart TG (2010) Distinct activities of GABA agonists at synaptic- and extrasynaptic-type GABAA receptors. J Physiol 588:1251–1268

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Meera P, Wallner M, Otis TS (2011) Molecular basis for the high THIP/gaboxadol sensitivity of extrasynaptic GABAA receptors. J Neurophysiol 106:2057–2064

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Karim N, Wellendorph P, Absalom N, Bang LH, Jensen ML, Hansen MM, Lee HJ, Johnston GA, Hanrahan JR, Chebib M (2012) Low nanomolar GABA effects at extrasynaptic α4β1/β3delta GABAA receptor subtypes indicate a different binding mode for GABA at these receptors. Biochem Pharmacol 84:549–557

    PubMed  CAS  Google Scholar 

  49. Hoestgaard-Jensen K, O’Connor RM, Dalby NO, Simonsen C, Finger BC, Golubeva A, Hammer H, Bergmann ML, Kristiansen U, Krogsgaard-Larsen P, Brauner-Osborne H, Ebert B, Frolund B, Cryan JF, Jensen AA (2013) The orthosteric GABAA receptor ligand Thio-4-PIOL displays distinctly different functional properties at synaptic and extrasynaptic receptors. Br J Pharmacol 170:919–932

    PubMed  CAS  Google Scholar 

  50. Wallner M, Hanchar HJ, Olsen RW (2014) Alcohol selectivity of β3-containing GABAA receptors: evidence for a unique extracellular alcohol/imidazobenzodiazepine Ro15-4513 binding site at the α+β- subunit interface in αβ3δ GABAA receptors. Neurochem Res 39:1118–1126

    PubMed  CAS  Google Scholar 

  51. Chen L, Durkin KA, Casida JE (2006) Structural model for γ-aminobutyric acid receptor noncompetitive antagonist binding: widely diverse structures fit the same site. Proc Natl Acad Sci USA 103:5185–5190

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Absalom N, Eghorn LF, Villumsen IS, Karim N, Bay T, Olsen JV, Knudsen GM, Brauner-Osborne H, Frolund B, Clausen RP, Chebib M, Wellendorph P (2012) α4βδ GABAA receptors are high-affinity targets for γ-hydroxybutyric acid (GHB). Proc Natl Acad Sci USA 109:13404–13409

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Connelly WM, Errington AC, Crunelli V (2013) γ-Hydroxybutyric acid (GHB) is not an agonist of extrasynaptic GABAA receptors. PLoS One 8:e79062

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Wafford KA, van Niel MB, Ma QP, Horridge E, Herd MB, Peden DR, Belelli D, Lambert JJ (2009) Novel compounds selectively enhance δ subunit containing GABAA receptors and increase tonic currents in thalamus. Neuropharmacology 56:182–189

    PubMed  CAS  Google Scholar 

  55. Jensen ML, Wafford KA, Brown AR, Belelli D, Lambert JJ, Mirza NR (2013) A study of subunit selectivity, mechanism and site of action of the δ selective compound 2 (DS2) at human recombinant and rodent native GABAA receptors. Br J Pharmacol 168:1118–1132

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Sigel E, Baur R, Racz I, Marazzi J, Smart TG, Zimmer A, Gertsch J (2011) The major central endocannabinoid directly acts at GABAA receptors. Proc Natl Acad Sci USA 108:18150–18155

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Smith GB, Olsen RW (1994) Identification of a [3H]muscimol photoaffinity substrate in the bovine GABAA receptor α subunit. J Biol Chem 269:20380–20387

    PubMed  CAS  Google Scholar 

  58. Sigel E, Baur R, Trube G, Möhler H, Malherbe P (1990) The effect of subunit composition of rat brain GABAA receptors on channel function. Neuron 5:703–711

    PubMed  CAS  Google Scholar 

  59. Belelli D, Lambert JJ, Peters JA, Wafford K, Whiting PJ (1997) The interaction of the general anesthetic etomidate with the GABAA receptor is influenced by a single amino acid. Proc Natl Acad Sci USA 94:11031–11036

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Khom S, Baburin I, Timin E, Hohaus A, Trauner G, Kopp B, Hering S (2007) Valerenic acid potentiates and inhibits GABAA receptors: molecular mechanism and subunit specificity. Neuropharmacology 53:178–187

    PubMed  CAS  Google Scholar 

  61. Olsen RW, Cagetti E, Wallner M (2003) Subunit specificity of steroid modulation of GABAA receptors. In: Smith SS (ed) Neurosteroid effects in the central nervous system: the role of the GABAA receptor. CRC Press, Boca Raton, pp 47–61

    Google Scholar 

  62. Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA (2003) Neurosteroid modulation of GABAA receptors. Prog Neurobiol 71:67–80

    PubMed  CAS  Google Scholar 

  63. Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by δ subunit-containing GABAA receptors. Proc Natl Acad Sci USA 100:14439–14444

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Bianchi MT, Macdonald RL (2003) Neurosteroids shift partial agonist activation of GABAA receptor channels from low- to high-efficacy gating patterns. J Neurosci 23:10934–10943

    PubMed  CAS  Google Scholar 

  65. Zheleznova N, Sedelnikova A, Weiss DS (2008) α1β2δ, a silent GABAA receptor: recruitment by tracazolate and neurosteroids. Br J Pharmacol 153:1062–1071

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–585

    PubMed  CAS  Google Scholar 

  67. Hanchar HJ, Dodson PD, Olsen RW, Otis TS, Wallner M (2005) Alcohol-induced motor impairment caused by increased extrasynaptic GABAA receptor activity. Nat Neurosci 8:339–345

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Hanchar HJ, Chutsrinopkun P, Meera P, Supavilai P, Sieghart W, Wallner M, Olsen RW (2006) Ethanol potently and competitively inhibits binding of the alcohol antagonist Ro15-4513 to α4/6β3δ GABAA receptors. Proc Natl Acad Sci USA 103:8546–8550

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Wallner M, Hanchar HJ, Olsen RW (2006) Low dose alcohol actions on α4β3δ GABAA receptors are reversed by the behavioral alcohol antagonist Ro15-4513. Proc Natl Acad Sci USA 103:8540–8545

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Wallner M, Olsen RW (2008) Physiology and pharmacology of alcohol: the imidazobenzodiazepine alcohol antagonist site on subtypes of GABAA receptors as an opportunity for drug development? Br J Pharmacol 154:288–298

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Ymer S, Draguhn A, Wisden W, Werner P, Keinanen K, Schofield PR, Sprengel R, Pritchett DB, Seeburg PH (1990) Structural and functional characterization of the γ1 subunit of GABAA/benzodiazepine receptors. EMBO J 9:3261–3267

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Wafford KA, Bain CJ, Whiting PJ, Kemp JA (1993) Functional comparison of the role of γ subunits in recombinant human GABAA/benzodiazepine receptors. Mol Pharmacol 44:437–442

    PubMed  CAS  Google Scholar 

  73. Khom S, Baburin I, Timin EN, Hohaus A, Sieghart W, Hering S (2006) Pharmacological properties of GABAA receptors containing γ1 subunits. Mol Pharmacol 69:640–649

    PubMed  CAS  Google Scholar 

  74. Dixon C, Sah P, Lynch JW, Keramidas A (2014) GABAA receptor α and γ subunits shape synaptic currents via different mechanisms. J Biol Chem 289:5399–5411

    PubMed  CAS  Google Scholar 

  75. Herb A, Wisden W, Lüddens H, Puia G, Vicini S, Seeburg PH (1992) The third γ subunit of the GABAA receptor family. Proc Natl Acad Sci USA 89:1433–1437

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Knoflach F, Rhyner T, Villa M, Kellenberger S, Drescher U, Malherbe P, Sigel E, Möhler H (1991) The γ3-subunit of the GABAA-receptor confers sensitivity to benzodiazepine receptor ligands. FEBS Lett 293:191–194

    PubMed  CAS  Google Scholar 

  77. Davies PA, Hanna MC, Hales TG, Kirkness EF (1997) Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit. Nature 385:820–823

    PubMed  CAS  Google Scholar 

  78. Jarboe CH, Poerter LA, Buckler RT (1968) Structural aspects of picrotoxinin action. J Med Chem 11:729–731

    PubMed  CAS  Google Scholar 

  79. Ticku MK, Ban M, Olsen RW (1978) Binding of [3H]α-dihydropicrotoxinin, a GABA synaptic antagonist, to rat brain membranes. Mol Pharmacol 14:391–402

    PubMed  CAS  Google Scholar 

  80. Ticku MK, Olsen RW (1979) Cage convulsants inhibit picrotoxinin binding. Neuropharmacology 18:315–318

    PubMed  CAS  Google Scholar 

  81. Bowery NG, Collins JF, Hill RG (1976) Bicyclic phosphorus esters that are potent convulsants and GABA antagonists. Nature 261:601–603

    PubMed  CAS  Google Scholar 

  82. Casida JE, Eto M, Moscioni AD, Engel JL, Milbrath DS, Verkade JG (1976) Structure-toxicity relationships of 2,6,7-trioxabicyclo(2.2.2)octanes and related compounds. Toxicol Appl Pharmacol 36:261–279

    PubMed  CAS  Google Scholar 

  83. Casida JE (1993) Insecticide action at the GABA-gated chloride channel: recognition, progress, and prospects. Arch Insect Biochem Physiol 22:13–23

    PubMed  CAS  Google Scholar 

  84. Squires RF, Casida JE, Richardson M, Saederup E (1983) [35S]TBPS binds with high affinity to brain-specific sites coupled to GABAA and ion recognition sites. Mol Pharmacol 23:326–336

    PubMed  CAS  Google Scholar 

  85. Olsen RW (1986) Convulsant and anticonvulsant drug receptor binding. In: O’Brien RD (ed) Receptor binding in drug research. Marcel Dekker, New York, pp 93–121

    Google Scholar 

  86. Hold KM, Sirisoma NS, Ikeda T, Narahashi T, Casida JE (2000) α-Thujone (the active component of absinthe): GABAA receptor modulation and metabolic detoxification. Proc Natl Acad Sci USA 97:3826–3831

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Olsen RW, Gordey M (2000) GABAA receptor chloride ion channels. In: Endo Y, Kurachi M, Mishina M (eds) Pharmacology of ionic channel function: activators and inhibitors. Handbook of Experimental Pharmacology. Springer, Heidelberg, pp 499–517

    Google Scholar 

  88. Ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE (1993) A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363:449–451

    PubMed  CAS  Google Scholar 

  89. Galzi J-L, Changeux J-P (1994) Ligand-gated ion channels as unconventional allosteric proteins. Curr Opin Struct Biol 4:554–565

    CAS  Google Scholar 

  90. Perret P, Sarda X, Wolff M, Wu TT, Bushey D, Goeldner M (1999) Interaction of non-competitive blockers within the GABAA chloride channel using chemically reactive probes as chemical sensors for cysteine mutants. J Biol Chem 274:25350–25354

    PubMed  CAS  Google Scholar 

  91. Hainzl D, Cole LM, Casida JE (1998) Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chem Res Toxicol 11:1529–1535

    PubMed  CAS  Google Scholar 

  92. Ikeda T, Zhao X, Nagata K, Kono Y, Shono T, Yeh JZ, Narahashi T (2001) Fipronil modulation of GABAA receptors in rat dorsal root ganglion neurons. J Pharmacol Exp Ther 296:914–921

    PubMed  CAS  Google Scholar 

  93. Zhao C, Hwang SH, Buchholz BA, Carpenter TS, Lightstone F, Yang J, Hammock BD, Casida JE (2014) GABAA receptor target of tetramethylenedisulfotetramine. Proc Natl Acad Sci USA 111:8607–8612

    PubMed  CAS  Google Scholar 

  94. Ticku MK, Olsen RW (1978) Interaction of barbiturates with dihydropicrotoxinin binding sites related to the GABA receptor-ionophore system. Life Sci 22:1643–1651

    PubMed  CAS  Google Scholar 

  95. Bowery NG, Dray A (1976) Barbiturate reversal of amino acid antagonism produced by convulsant agents. Nature 264:276–278

    PubMed  CAS  Google Scholar 

  96. Study RE, Barker JL (1981) Diazepam and (-)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of γ-aminobutyric acid responses in cultured central neurons. Proc Natl Acad Sci USA 78:7180–7184

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Wong EH, Leeb-Lundberg LM, Teichberg VI, Olsen RW (1984) γ-Aminobutyric acid activation of 36Cl-flux in rat hippocampal slices and its potentiation by barbiturates. Brain Res 303:267–275

    PubMed  CAS  Google Scholar 

  98. Supavilai P, Mannonen A, Karobath M (1982) Modulation of GABA binding sites by CNS depressants and CNS convulsants. Neurochem Int 4:259–268

    PubMed  CAS  Google Scholar 

  99. Olsen RW, Fischer JB, Dunwiddie TV (1986) Barbiturate enhancement of GABA receptor binding and function as a mechanism of anesthesia. In: Roth S, Miller KW (eds) Molecular and cellular mechanisms of anaesthetics. Plenum Publishing Corporation, New York, pp 165–177

    Google Scholar 

  100. Olsen RW, Li G-D (2011) GABAA receptors as molecular targets of general anesthetics: identification of binding sites provides clues to allosteric modulation. Can J Anaesth 58:206–215

    PubMed  PubMed Central  Google Scholar 

  101. Olsen RW, Snowman AM (1982) Chloride-dependent enhancement by barbiturates of GABA receptor binding. J Neurosci 2:1812–1823

    PubMed  CAS  Google Scholar 

  102. Leeb-Lundberg F, Snowman A, Olsen RW (1980) Barbiturate receptor sites are coupled to benzodiazepine receptors. Proc Natl Acad Sci USA 77:7468–7472

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Leeb-Lundberg F, Snowman A, Olsen RW (1981) Perturbation of benzodiazepine receptor binding by pyrazolopyridines involves picrotoxinin/barbiturate receptor sites. J Neurosci 1:471–477

    PubMed  CAS  Google Scholar 

  104. Harvey RJ, Betz H (2000) Structure, diversity, pharmacology of glycine receptor chloride channels. In: Endo Y, Kurachi M, Mishina M (eds) Pharmacology of ionic channel function: activators and inhibitors. Handbook of experimental pharmacology, vol 147. Springer, Heidelberg, pp 479–497

    Google Scholar 

  105. Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474:54–60

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Olsen RW, Li G-D, Wallner M, Trudell JR, Bertaccini EJ, Lindahl E, Miller KW, Alkana RL, Davies DL (2014) Structural models of ligand-gated ion channels: sites of action for anesthetics and ethanol. Alcohol Clin Exp Res 38:595–603

    PubMed  CAS  Google Scholar 

  107. Miller PS, Aricescu AR (2014) Crystal structure of a human GABA receptor. Nature (Epub ahead of print)

  108. Braestrup C, Squires RF (1977) Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc Natl Acad Sci USA 74:3805–3809

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Möhler H, Okada T (1977) Benzodiazepine receptor: demonstration in the central nervous system. Science 198:849–851

    PubMed  Google Scholar 

  110. Costa E, Guidotti A (1979) Molecular mechanisms in the receptor action of benzodiazepines. Annu Rev Pharmacol Toxicol 19:531–545

    PubMed  CAS  Google Scholar 

  111. Haefely W (1982) Neurophysiology of benzodiazepines:summary. In: Usdin E et al (eds) Pharmacology of benzodiazepines. Macmillan, Surrey, pp 509–516

    Google Scholar 

  112. Karobath M, Placheta P, Lippitsch M, Krogsgaard-Larsen P (1979) Is stimulation of benzodiazepine receptor binding mediated by a novel GABA receptor? Nature 278:748–749

    PubMed  CAS  Google Scholar 

  113. Tallman JF, Paul SM, Skolnick P, Gallager DW (1980) Receptors for the age of anxiety: pharmacology of the benzodiazepines. Science 207:274–281

    PubMed  CAS  Google Scholar 

  114. Squires RF, Benson DI, Braestrup C, Coupet J, Klepner CA, Myers V, Beer B (1979) Some properties of brain specific benzodiazepine receptors: new evidence for multiple receptors. Pharmacol Biochem Behav 10:825–830

    PubMed  CAS  Google Scholar 

  115. Lo MM, Niehoff DL, Kuhar MJ, Snyder SH (1983) Autoradiographic differentiation of multiple benzodiazepine receptors by detergent solubilization and pharmacologic specificity. Neurosci Lett 39:37–44

    PubMed  CAS  Google Scholar 

  116. Olsen RW, McCabe RT, Wamsley JK (1990) GABAA receptor subtypes: autoradiographic comparison of GABA, benzodiazepine, and convulsant binding sites in the rat central nervous system. J Chem Neuroanat 3:59–76

    PubMed  CAS  Google Scholar 

  117. Usdin E, Skolnick P, Tallman JF, Greenblatt D, Paul SM (eds) (1982) Pharmacology of the benzodiazepines. Macmillan, Godalmig

    Google Scholar 

  118. Braestrup C, Nielsen M, Krogsgaard-Larsen P, Falch E (1979) Partial agonists for brain GABA/benzodiazepine receptor complex. Nature 280:331–333

    PubMed  CAS  Google Scholar 

  119. Hunkeler W, Möhler H, Pieri L, Polc P, Bonetti EP, Cumin R, Schaffner R, Haefely W (1981) Selective antagonists of benzodiazepines. Nature 290:514–516

    PubMed  CAS  Google Scholar 

  120. Braestrup C, Schmiechen R, Neef G, Nielsen M, Petersen EN (1982) Interaction of convulsive ligands with benzodiazepine receptors. Science 216:1241–1243

    PubMed  CAS  Google Scholar 

  121. Braestrup C, Nielsen M, Olsen CE (1980) Urinary and brain beta-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors. Proc Natl Acad Sci USA 77:2288–2292

    PubMed  CAS  PubMed Central  Google Scholar 

  122. Braestrup C, Nielsen M (1981) GABA reduces binding of 3H-methyl beta-carboline-3-carboxylate to brain benzodiazepine receptors. Nature 294:472–474

    PubMed  CAS  Google Scholar 

  123. Wong EH, Snowman AM, Leeb-Lundberg LM, Olsen RW (1984) Barbiturates allosterically inhibit GABA antagonist and benzodiazepine inverse agonist binding. Eur J Pharmacol 102:205–212

    PubMed  CAS  Google Scholar 

  124. Lukas SE, Penetar D, Su Z, Geaghan T, Maywalt M, Tracy M, Rodolico J, Palmer C, Ma Z, Lee DY (2013) A standardized kudzu extract (NPI-031) reduces alcohol consumption in nontreatment-seeking male heavy drinkers. Psychopharmacology 226:65–73

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Shen Y, Lindemeyer AK, Gonzalez C, Shao XM, Spigelman I, Olsen RW, Liang J (2012) Dihydromyricetin as a novel anti-alcohol intoxication medication. J Neurosci 32:390–401

    PubMed  CAS  PubMed Central  Google Scholar 

  126. Kahnberg P, Lager E, Rosenberg C, Schougaard J, Camet L, Sterner O, Ostergaard Nielsen E, Nielsen M, Liljefors T (2002) Refinement and evaluation of a pharmacophore model for flavone derivatives binding to the benzodiazepine site of the GABAA receptor. J Med Chem 45:4188–4201

    PubMed  CAS  Google Scholar 

  127. Hanrahan JR, Chebib M, Johnston GA (2011) Flavonoid modulation of GABAA receptors. Br J Pharmacol 163:234–245

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Karim N, Gavande N, Wellendorph P, Johnston GA, Hanrahan JR, Chebib M (2011) 3-Hydroxy-2′-methoxy-6-methylflavone: a potent anxiolytic with a unique selectivity profile at GABAA receptor subtypes. Biochem Pharmacol 82:1971–1983

    PubMed  CAS  Google Scholar 

  129. Arolfo MP, Overstreet DH, Yao L, Fan P, Lawrence AJ, Tao G, Keung WM, Vallee BL, Olive MF, Gass JT, Rubin E, Anni H, Hodge CW, Besheer J, Zablocki J, Leung K, Blackburn BK, Lange LG, Diamond I (2009) Suppression of heavy drinking and alcohol seeking by a selective ALDH-2 inhibitor. Alcohol Clin Exp Res 33:1935–1944

    PubMed  Google Scholar 

  130. Möhler H, Battersby MK, Richards JG (1980) Benzodiazepine receptor protein identified and visualized in brain tissue by a photoaffinity label. Proc Natl Acad Sci USA 77:1666–1670

    PubMed  PubMed Central  Google Scholar 

  131. Sieghart W, Karobath M (1980) Molecular heterogeneity of benzodiazepine receptors. Nature 286:285–287

    PubMed  CAS  Google Scholar 

  132. Duncalfe LL, Carpenter MR, Smillie LB, Martin IL, Dunn SM (1996) The major site of photoaffinity labeling of the GABAA receptor by [3H]flunitrazepam is histidine 102 of the alpha subunit. J Biol Chem 271:9209–9214

    PubMed  CAS  Google Scholar 

  133. Smith GB, Olsen RW (2000) Deduction of amino acid residues in the GABAA receptor alpha subunits photoaffinity labeled with the benzodiazepine flunitrazepam. Neuropharmacology 39:55–64

    PubMed  CAS  Google Scholar 

  134. Sawyer GW, Chiara DC, Olsen RW, Cohen JB (2002) Identification of the bovine GABAA receptor α subunit residues photolabeled by the imidazobenzodiazepine [3H]Ro15-4513. J Biol Chem 277:50036–50045

    PubMed  CAS  Google Scholar 

  135. Smith GB, Olsen RW (1995) Functional domains of GABAA receptors. Trends Pharmacol Sci 16:162–168

    PubMed  CAS  Google Scholar 

  136. Sigel E, Buhr A (1997) The benzodiazepine binding site of GABAA receptors. Trends Pharmacol Sci 18:425–429

    PubMed  CAS  Google Scholar 

  137. Cook JB, Foster KL, Eiler WJ 2nd, McKay PF, Woods J 2nd, Harvey SC, Garcia M, Grey C, McCane S, Mason D, Cummings R, Li X, Cook JM, June HL (2005) Selective GABAA α5 benzodiazepine inverse agonist antagonizes the neurobehavioral actions of alcohol. Alcohol Clin Exp Res 29:1390–1401

    PubMed  CAS  Google Scholar 

  138. Tan KR, Gonthier A, Baur R, Ernst M, Goeldner M, Sigel E (2007) Proximity-accelerated chemical coupling reaction in the benzodiazepine-binding site of GABAA receptors: superposition of different allosteric modulators. J Biol Chem 282:26316–26325

    PubMed  CAS  Google Scholar 

  139. Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276

    PubMed  CAS  Google Scholar 

  140. Richter L, de Graaf C, Sieghart W, Varagic Z, Morzinger M, de Esch IJ, Ecker GF, Ernst M (2012) Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. Nat Chem Biol 8:455–464

    PubMed  CAS  PubMed Central  Google Scholar 

  141. Rudolph U, Crestani F, Benke D, Brunig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Möhler H (1999) Benzodiazepine actions mediated by specific GABAA receptor subtypes. Nature 401:796–800

    PubMed  CAS  Google Scholar 

  142. McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore KW, Carling RW, Street LJ, Castro JL, Ragan CI, Dawson GR, Whiting PJ (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nat Neurosci 3:587–592

    PubMed  CAS  Google Scholar 

  143. Low K, Crestani F, Keist R, Benke D, Brunig I, Benson JA, Fritschy JM, Rulicke T, Bluethmann H, Möhler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134

    PubMed  CAS  Google Scholar 

  144. Rudolph U, Antkowiak B (2004) Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5:709–720

    PubMed  CAS  Google Scholar 

  145. Liang J, Zhang N, Cagetti E, Houser CR, Olsen RW, Spigelman I (2006) Chronic intermittent ethanol-induced switch of ethanol actions from extrasynaptic to synaptic hippocampal GABAA receptors. J Neurosci 26:1749–1758

    PubMed  CAS  Google Scholar 

  146. Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL, Helfand RS, Morrow AL (2009) The role of GABAA receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology 205:529–564

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Maksay G, Ticku MK (1985) Dissociation of [35S]TBPS binding differentiates convulsant and depressant drugs that modulate GABAergic transmission. J Neurochem 44:480–486

    PubMed  CAS  Google Scholar 

  148. Olsen RW, Chang CS, Li G, Hanchar HJ, Wallner M (2004) Fishing for allosteric sites on GABAA receptors. Biochem Pharmacol 68:1675–1684

    PubMed  CAS  Google Scholar 

  149. Ramerstorfer J, Furtmuller R, Sarto-Jackson I, Varagic Z, Sieghart W, Ernst M (2011) The GABAA receptor α+β- interface: a novel target for subtype selective drugs. J Neurosci 31:870–877

    PubMed  CAS  PubMed Central  Google Scholar 

  150. Huang SH, Lewis TM, Lummis SC, Thompson AJ, Chebib M, Johnston GA, Duke RK (2012) Mixed antagonistic effects of the ginkgolides at recombinant human rho1 GABAC receptors. Neuropharmacology 63:1127–1139

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Mascia MP, Fabbri D, Dettori MA, Ledda G, Delogu G, Biggio G (2012) Hydroxylated biphenyl derivatives are positive modulators of human GABAA receptors. Eur J Pharmacol 693:45–50

    Google Scholar 

  152. Li G-D, Chiara DC, Sawyer GW, Husain SS, Olsen RW, Cohen JB (2006) Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J Neurosci 26:11599–11605

    PubMed  CAS  Google Scholar 

  153. Chiara DC, Jayakar SS, Zhou X, Zhang X, Savechenkov PY, Bruzik KS, Miller KW, Cohen JB (2013) Specificity of intersubunit general anesthetic-binding sites in the transmembrane domain of the human α1β3γ2 GABAA receptor. J Biol Chem 288:19343–19357

    PubMed  CAS  PubMed Central  Google Scholar 

  154. Forman SA, Miller KW (2011) Anesthetic sites and allosteric mechanisms of action on Cys-loop ligand-gated ion channels. Can J Anaesth 58:191–205

    PubMed  PubMed Central  Google Scholar 

  155. Bali M, Akabas MH (2004) Defining the propofol binding site location on the GABAA receptor. Mol Pharmacol 65:68–76

    PubMed  CAS  Google Scholar 

  156. Bali M, Jansen M, Akabas MH (2009) GABA-induced intersubunit conformational movement in the GABAA receptor α1M1-β2M3 transmembrane subunit interface: experimental basis for homology modeling of an intravenous anesthetic binding site. J Neurosci 29:3083–3092

    PubMed  CAS  PubMed Central  Google Scholar 

  157. Ernst M, Bruckner S, Boresch S, Sieghart W (2005) Comparative models of GABAA receptor extracellular and transmembrane domains: important insights in pharmacology and function. Mol Pharmacol 68:1291–1300

    PubMed  CAS  Google Scholar 

  158. Krasowski MD, Nishikawa K, Nikolaeva N, Lin A, Harrison NL (2001) Methionine 286 in transmembrane domain 3 of the GABAA receptor β subunit controls a binding cavity for propofol and other alkylphenol general anesthetics. Neuropharmacology 41:952–964

    PubMed  CAS  PubMed Central  Google Scholar 

  159. Stewart D, Desai R, Cheng Q, Liu A, Forman SA (2008) Tryptophan mutations at azi-etomidate photo-incorporation sites on α1 or β2 subunits enhance GABAA receptor gating and reduce etomidate modulation. Mol Pharmacol 74:1687–1695

    PubMed  CAS  PubMed Central  Google Scholar 

  160. Stewart DS, Hotta M, Li G-D, Desai R, Chiara DC, Olsen RW, Forman SA (2013) Cysteine substitutions define etomidate binding and gating linkages in the α-M1 domain of GABAA receptors. J Biol Chem 288:30373–30386

    PubMed  CAS  Google Scholar 

  161. Desai R, Ruesch D, Forman SA (2009) GABAA receptor mutations at β2N265 alter etomidate efficacy while preserving basal and agonist-dependent activity. Anesthesiology 111:774–784

    PubMed  CAS  PubMed Central  Google Scholar 

  162. Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, Harris RA, Harrison NL (1997) Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature 389:385–389

    PubMed  CAS  Google Scholar 

  163. Jenkins A, Greenblatt EP, Faulkner HJ, Bertaccini E, Light A, Lin A, Andreasen A, Viner A, Trudell JR, Harrison NL (2001) Evidence for a common binding cavity for three general anesthetics within the GABAA receptor. J Neurosci 21:136

    Google Scholar 

  164. Amin J, Weiss DS (1993) GABAA receptor needs two homologous domains of the beta-subunit for activation by GABA but not by pentobarbital. Nature 366:565–569

    PubMed  CAS  Google Scholar 

  165. Rüsch D, Zhong H, Forman SA (2004) Gating allosterism at a single class of etomidate sites on α1β2γ2L GABAA receptors accounts for both direct activation and agonist modulation. J Biol Chem 279:20982–20992

    PubMed  Google Scholar 

  166. Li G-D, Chiara DC, Cohen JB, Olsen RW (2010) Numerous classes of general anesthetics inhibit etomidate binding to GABAA receptors. J Biol Chem 285:8615–8620

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Jurd R, Arras M, Lambert S, Drexler B, Siegwart R, Crestani F, Zaugg M, Vogt KE, Ledermann B, Antkowiak B, Rudolph U (2003) General anesthetic actions in vivo strongly attenuated by a point mutation in the GABAA receptor β3 subunit. Faseb J 17:250–252

    PubMed  CAS  Google Scholar 

  168. Reynolds DS, Rosahl TW, Cirone J, O’Meara GF, Haythornthwaite A, Newman RJ, Myers J, Sur C, Howell O, Rutter AR, Atack J, Macaulay AJ, Hadingham KL, Hutson PH, Belelli D, Lambert JJ, Dawson GR, McKernan R, Whiting PJ, Wafford KA (2003) Sedation and anesthesia mediated by distinct GABAA receptor isoforms. J Neurosci 23:8608–8617

    PubMed  CAS  Google Scholar 

  169. Mascia MP, Trudell JR, Harris RA (2000) Specific binding sites for alcohols and anesthetics on ligand-gated ion channels. Proc Natl Acad Sci USA 97:9305–9310

    PubMed  CAS  PubMed Central  Google Scholar 

  170. Harrison NL, Simmonds MA (1984) Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 323:287–292

    PubMed  CAS  Google Scholar 

  171. Simmonds MA (1991) Modulation of GABAA receptor by steroids. Semin Neurosci 3:231–239

    Google Scholar 

  172. Smith SS, Waterhouse BD, Woodward DJ (1987) Locally applied progesterone metabolites alter neuronal responsiveness in the cerebellum. Brain Res Bull 18:739–747

    PubMed  CAS  Google Scholar 

  173. Smith SS (ed) (2003) Neurosteroid effects in the central nervous system: the role of the GABAA receptor. CRC Press, Boca Raton

    Google Scholar 

  174. Olsen RW (1984) GABA receptor binding antagonism by the amidine steroid RU5135. Eur J Pharmacol 103:333–337

    PubMed  CAS  Google Scholar 

  175. Simmonds MA, Turner JP (1985) Antagonism of inhibitory amino acids by the steroid derivative RU5135. Br J Pharmacol 84:631–635

    PubMed  CAS  PubMed Central  Google Scholar 

  176. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007

    PubMed  CAS  Google Scholar 

  177. Concas A, Mostallino MC, Porcu P, Follesa P, Barbaccia ML, Trabucchi M, Purdy RH, Grisenti P, Biggio G (1998) Role of brain allopregnanolone in the plasticity of GABAA receptor in rat brain during pregnancy and after delivery. Proc Natl Acad Sci USA 95:13284–13289

    PubMed  CAS  PubMed Central  Google Scholar 

  178. Paul SM, Purdy RH (1992) Neuroactive steroids. Faseb J 6:2311–2322

    PubMed  CAS  Google Scholar 

  179. Morrow AL, Janis GC, VanDoren MJ, Matthews DB, Samson HH, Janak PH, Grant KA (1999) Neurosteroids mediate pharmacological effects of ethanol: a new mechanism of ethanol action? Alcohol Clin Exp Res 23:1933–1940

    PubMed  CAS  Google Scholar 

  180. Barbaccia ML, Serra M, Purdy RH, Biggio G (2001) Stress and neuroactive steroids. Int Rev Neurobiol 46:243–272

    PubMed  CAS  Google Scholar 

  181. Maguire JL, Stell BM, Rafizadeh M, Mody I (2005) Ovarian cycle-linked changes in GABAA receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8:797–804

    PubMed  CAS  Google Scholar 

  182. Sabaliauskas N, Shen H, Homanics GE, Smith SS, Aoki C (2012) Knockout of the GABA receptor subunit α4 reduces functional δ-containing extrasynaptic receptors in hippocampal pyramidal cells at the onset of puberty. Brain Res 1450:11–23

    PubMed  CAS  PubMed Central  Google Scholar 

  183. Gee KW, Bolger MB, Brinton RE, Coirini H, McEwen BS (1988) Steroid modulation of the chloride ionophore in rat brain: structure–activity requirements, regional dependence and mechanism of action. J Pharmacol Exp Ther 246:803–812

    PubMed  CAS  Google Scholar 

  184. Turner DM, Ransom RW, Yang JS, Olsen RW (1989) Steroid anesthetics and naturally-occurring analogs modulate the GABA receptor complex at a site distinct from barbiturates. J Pharmacol Exp Ther 248:960–966

    PubMed  CAS  Google Scholar 

  185. Wang DS, Orser BA (2011) Inhibition of learning and memory by general anesthetics. Can J Anaesth 58:167–177

    PubMed  Google Scholar 

  186. Perouansky M, Pearce RA (2011) How we recall (or don’t): the hippocampal memory machine and anesthetic amnesia. Can J Anaesth 58:157–166

    PubMed  PubMed Central  Google Scholar 

  187. Dawson GR, Maubach KA, Collinson N, Cobain M, Everitt BJ, MacLeod AM, Choudhury HI, McDonald LM, Pillai G, Rycroft W, Smith AJ, Sternfeld F, Tattersall FD, Wafford KA, Reynolds DS, Seabrook GR, Atack JR (2006) An inverse agonist selective for α5 subunit-containing GABAA receptors enhances cognition. J Pharmacol Exp Ther 316:1335–1345

    PubMed  CAS  Google Scholar 

  188. Saab BJ, Maclean AJ, Kanisek M, Zurek AA, Martin LJ, Roder JC, Orser BA (2010) Short-term memory impairment after isoflurane in mice is prevented by the α5 GABAA receptor inverse agonist L-655,708. Anesthesiology 113:1061–1071

    PubMed  CAS  Google Scholar 

  189. Hosie AM, Wilkins ME, da Silva HM, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444:486–489

    PubMed  CAS  Google Scholar 

  190. Li G-D, Chiara DC, Cohen JB, Olsen RW (2009) Neurosteroids allosterically modulate binding of the anesthetic etomidate to GABAA receptors. J Biol Chem 284:11771–11775

    PubMed  CAS  PubMed Central  Google Scholar 

  191. Chen Z-W, Manion B, Townsend RR, Reichert DE, Covey DF, Steinbach JH, Sieghart W, Fuchs K, Evers AS (2012) Neurosteroid analog photolabeling of a site in the third transmembrane domain of the β3 subunit of the GABAA receptor. Mol Pharmacol 82:408–419

    PubMed  CAS  PubMed Central  Google Scholar 

  192. Wei W, Faria LC, Mody I (2004) Low ethanol concentrations selectively augment the tonic inhibition mediated by δ subunit-containing GABAA receptors in hippocampal neurons. J Neurosci 24:8379–8382

    PubMed  CAS  Google Scholar 

  193. Sundstrom-Poromaa I, Smith DH, Gong QH, Sabado TN, Li X, Light A, Wiedmann M, Williams K, Smith SS (2002) Hormonally regulated α4β2δ GABAA receptors are a target for alcohol. Nat Neurosci 5:721–722

    PubMed  CAS  PubMed Central  Google Scholar 

  194. Korpi ER, Kleingoor C, Kettenmann H, Seeburg PH (1993) Benzodiazepine-induced motor impairment linked to point mutation in cerebellar GABAA receptor. Nature 361:356–359

    PubMed  CAS  Google Scholar 

  195. Suzdak PD, Glowa JR, Crawley JN, Schwartz RD, Skolnick P, Paul SM (1986) A selective imidazobenzodiazepine antagonist of ethanol in the rat. Science 234:1243–1247

    PubMed  CAS  Google Scholar 

  196. Santhakumar V, Wallner M, Otis T (2007) Ethanol acts directly on extrasynaptic subtypes of GABAA receptors to increase tonic inhibition. Alcohol 41:211–221

    PubMed  CAS  PubMed Central  Google Scholar 

  197. Perkins DI, Trudell JR, Crawford DK, Alkana RL, Davies DL (2010) Molecular targets and mechanisms for ethanol action in glycine receptors. Pharmacol Ther 127:53–65

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks to Drs. Martin Wallner, Jing Liang, and Kerstin Lindemeyer for helpful discussions and assistance with graphics and references. Thanks to numerous other students and postdocs for valuable discussions. Thanks to Professor Jean-Pierre Changeux for mentoring and encouragement. Supported by Grants from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Olsen.

Additional information

Special Issue: In honor of Krogsgaard-Larsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olsen, R.W. Analysis of γ-Aminobutyric Acid (GABA) Type A Receptor Subtypes Using Isosteric and Allosteric Ligands. Neurochem Res 39, 1924–1941 (2014). https://doi.org/10.1007/s11064-014-1382-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1382-3

Keywords

Navigation