Skip to main content
Log in

A Rapid Facilitation of Acid-Sensing Ion Channels Current by Corticosterone in Cultured Hippocampal Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Acid-sensing ion channels (ASIC) play an important role in the central neuronal system and excessive activation of ASICs induces neuronal damage. Recent studies show that ASIC1a, a subunit of ASIC, is involved in stress processes but the mechanisms by which ASIC1a is regulated by corticosterone (CORT), a stress-induced hormone, are as yet unelucidated. In the present study, to explore the effects of CORT on ASIC1a in cultured hippocampal neurons, the whole-cell patch clamp technique was used. We present data showing that extracellular application of 1 and 10 μM CORT increase the inward current when solution of pH 6.0 is applied to the exterior of the cell. Moreover, extracellular application of membrane-impermeable CORT-BSA (1 μM) maintains current elevation induced by the action of ASIC1a. However, intracellular application of CORT (1 μM) did not increase ASIC1a current. Subsequent extracellular application of CORT enhanced the amplitude of ASIC1a current. Also, RU38486 (10 μM), an antagonist of nuclear glucocorticoids receptor, did not block an increase of ASIC1a current induced by CORT. In addition, CORT application further resulted in a significant enhancement of ASIC1a current in the presence of phorbol 12-myristate 13-acetate (0.5 μM) or bryostatin1 (1 μM), which are both protein kinase C (PKC) agonists. On the contrary, after pretreatment with GF109203X (3 μM), an antagonist of PKC, CORT did not elevate ASIC1a current. These data indicate that the rapid increase of ASIC1a current induced by CORT may be caused by the activation of corticosteroid receptors found on the cell membranes of hippocampal neurons and it may involve a PKC-dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ASIC:

Acid-sensing ion channel

PKC:

Protein kinase C

PMA:

Phorbol 12-myristate 13-acetate

PcTx1:

Psalmotoxin-1

DMSO:

Dimethyl sulphoxide

References

  1. Shibuya K, Takata N, Hojo Y, Furukawa A, Yasumasu N, Kimoto T, Enami T, Suzuki K, Tanabe N, Ishii H, Mukai H, Takahashi T, Hattori T, Kawato S (2003) Hippocampal cytochrome P450s synthesize brain neurosteroids which are paracrine neuromodulators of synaptic signal transduction. Biochim Biopys Acta 1619:301–316

    Article  CAS  Google Scholar 

  2. Wang Q, Yu K, Wang J, Lin H, Wu Y, Wang W (2012) Predator stress-induced persistent emotional arousal is associated with alterations of plasma corticosterone and hippocampal steroid receptors in rat. Behav Brain Res 230:167–1674

    Article  PubMed  CAS  Google Scholar 

  3. Morales-Medina JC, Sanchez F, Flores G, Dumont Y, Quirion R (2009) Morphological reorganization after repeated corticosterone administration in the hippocampus, nucleus accumbens and amygdala in the rat. J Chem Neuroanat 38:266–272

    Article  PubMed  CAS  Google Scholar 

  4. Bagot RC, Tse YC, Nguyen HB, Wong AS, Meaney MJ, Wong TP (2012) Maternal care influences hippocampal N-methyl-d-aspartate receptor function and dynamic regulation by corticosterone in adulthood. Biol Psychiatry 72:491–498

    Article  PubMed  CAS  Google Scholar 

  5. Krugers HJ, Knollema S, Kemper RH, Ter Horst GJ, Korf J (1995) Down-regulation of the hypothalamo-pituitary-adrenal axis reduces brain damage and number of seizures following hypoxia/ischaemia in rats. Brain Res 690:41–47

    Article  PubMed  CAS  Google Scholar 

  6. Akopian AN, Chen CC, Ding Y, Cesare P, Wood JN (2000) A new member of the acid-sensing ion channel family. Neuroreport 11:2217–2222

    Article  PubMed  CAS  Google Scholar 

  7. Krishtal O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26:477–483

    Article  PubMed  CAS  Google Scholar 

  8. Alvarez de la Rosa D, Krueger SR, Kolar A, Shao D, Fitzsimonds RM, Canessa CM (2003) Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J Physiol 546:77–87

    Article  PubMed  CAS  Google Scholar 

  9. Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH Jr, Welsh MJ (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34:463–477

    Article  PubMed  CAS  Google Scholar 

  10. Cho JH, Askwith CC (2008) Presynaptic release probability is increased in hippocampal neurons from ASIC1 knockout mice. J Neurophysiol 99:426–441

    Article  PubMed  CAS  Google Scholar 

  11. Zha XM, Wemmie JA, Green SH, Welsh MJ (2006) ASIC1a is a postsynaptic proton receptor that influences the density of dendritic spines. Proc Natl Acad Sci USA 103:16556–16561

    Article  PubMed  CAS  Google Scholar 

  12. Coryell MW, Wunsch AM, Haenfler JM, Allen JE, Schnizler M, Ziemann AE, Cook MN, Dunning JP, Price MP, Rainier JD, Liu Z, Light AR, Langbehn DR, Wemmie JA (2009) Acid-sensing ion channel-1a in the amygdala, a novel therapeutic target in depression-related behavior. J Neurosci 29:5381–5388

    Article  PubMed  CAS  Google Scholar 

  13. Arteaga MF, Coric T, Straub C, Canessa CM (2008) A brain-specific SGK1 splice isoform regulates expression of ASIC1 in neurons. Proc Natl Acad Sci USA 105:4459–4464

    Article  PubMed  CAS  Google Scholar 

  14. Liu W, Yuen EY, Yan Z (2010) The stress hormone corticosterone increases synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors via serum- and glucocorticoid-inducible kinase (SGK) regulation of the GDI-Rab4 complex. J Biol Chem 285:6101–6108

    Article  PubMed  CAS  Google Scholar 

  15. Komatsuzaki Y, Hatanaka Y, Murakami G, Mukai H, Hojo Y, Saito M, Kimoto T, Kawato S (2012) Corticosterone induces rapid spinogenesis via synaptic glucocorticoid receptors and kinase networks in hippocampus. PLoS One 7:1–10

    Article  Google Scholar 

  16. Takahashi T, Kimoto T, Tanabe N, Hattori TA, Yasumatsu N, Kawato S (2002) Corticosterone acutely prolonged N-methyl-d-aspartate receptor-mediated Ca2+ elevation in cultured rat hippocampal neurons. J Neurochem 83:1441–1451

    Article  PubMed  CAS  Google Scholar 

  17. Arnsten AF (2011) Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia. Int J Dev Neurosci 29:215–223

    Article  PubMed  CAS  Google Scholar 

  18. Hu ZL, Huang C, Fu H, Jin Y, Wu WN, Xiong QJ, Xie N, Long LH, Chen JG, Wang F (2010) Disruption of PICK1 attenuates the function of ASICs and PKC regulation of ASICs. Am J Physiol Cell Physiol 299:C1355–C1362

    Article  PubMed  CAS  Google Scholar 

  19. Lin F, Xin Y, Wang J, Ma L, Liu J, Liu C, Long L, Wang F, Jin Y, Zhou J, Chen J (2007) Puerarin facilitates Ca(2+)-induced Ca(2+) release triggered by KCl-depolarization in primary cultured rat hippocampal neurons. Eur J Pharmacol 570:43–49

    Article  PubMed  CAS  Google Scholar 

  20. Chen GJ, Xiong Z, Yan Z (2013) Abeta impairs nicotinic regulation of inhibitory synaptic transmission and interneuron excitability in prefrontal cortex. Mol Neurodegener 17:3

    Article  Google Scholar 

  21. Baron A, Waldmann R, Lazdunski M (2002) ASIC-like, proton-activated currents in rat hippocampal neurons. J Physiol 539:485–494

    Article  PubMed  CAS  Google Scholar 

  22. Jadavji NM, Supina RD, Metz GA (2011) Blockade of mineralocorticoid and glucocorticoid receptors reverses stress-induced motor impairments. Neuroendocrinology 94:278–290

    Article  PubMed  CAS  Google Scholar 

  23. Lee JB, Wei J, Liu W, Cheng J, Feng J, Yan Z (2012) Histone deacetylase 6 gates the synaptic action of acute stress in prefrontal cortex. J Physiol 90:1535–1546

    Article  Google Scholar 

  24. Askwith CC, Cheng C, Ikuma M, Benson C, Price MP, Welsh MJ (2000) Neuropeptide FF and FMRFamide potentiate acid-evoked currents from sensory neurons and proton-gated DEG/ENaC channels. Neuron 26:133–141

    Article  PubMed  CAS  Google Scholar 

  25. Gao J, Wu LJ, Xu L, Xu TL (2004) Properties of the proton-evoked currents and their modulation by Ca2+ and Zn2+ in the acutely dissociated hippocampus CA1 neurons. Brain Res 1017:197–207

    Article  PubMed  CAS  Google Scholar 

  26. Wang W, Yu Y, Xu TL (2007) Modulation of acid-sensing ion channels by Cu(2+) in cultured hypothalamic neurons of the rat. Neuroscience 145:631–641

    Article  PubMed  CAS  Google Scholar 

  27. Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, Simon RP, Xiong ZG (2004) Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J Neurosci 24:8678–8689

    Article  PubMed  CAS  Google Scholar 

  28. Dwyer JM, Rizzo SJ, Neal SJ, Lin Q, Jow F, Arias RL, Rosenzweig-Lipson S, Dunlop J, Beyer CE (2009) Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models. Psychopharmacology 203:41–52

    Article  PubMed  CAS  Google Scholar 

  29. Wemmie JA, Coryell MW, Askwith CC, Lamani E, Leonard AS, Sigmund CD, Welsh MJ (2004) Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci USA 101:3621–3626

    Article  PubMed  CAS  Google Scholar 

  30. Nair SM, Werkman TR, Craig J, Finnell R, Joëls M, Eberwine JH (1998) Corticosteroid regulation of ion channel conductances and mRNA levels in individual hippocampal CA1 neurons. J Neurosci 18:2685–2696

    PubMed  CAS  Google Scholar 

  31. Yuen EY, Wei J, Liu W, Zhong P, Li X, Yan Z (2012) Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron 73:962–977

    Article  PubMed  CAS  Google Scholar 

  32. Sato S, Osanai H, Monma T, Harada T, Hirano A, Saito M, Kawato S (2004) Acute effect of corticosterone on N-methyl-D-aspartate receptor-mediated Ca2+ elevation in mouse hippocampal slices. Biochem Biophys Res Commun 321:510–513

    Article  PubMed  CAS  Google Scholar 

  33. Duggan A, Garcia-Anoveros J, Corey DP (2002) The PDZ domain protein PICK1 and the sodium channel BNaC1 interact and localize at mechanosensory terminals of dorsal root ganglion neurons and dendrites of central neurons. J Biol Chem 277:5203–5208

    Article  PubMed  CAS  Google Scholar 

  34. Hruska-Hageman AM, Wemmie JA, Price MP, Welsh MJ (2002) Interaction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non-voltage gated sodium channels BNC1 (brain Na+ channel 1) and ASIC (acid-sensing ion channel). Biochem J 361:443–450

    Article  PubMed  CAS  Google Scholar 

  35. Masukawa K, Sakai N, Ohmori S, Shirai Y, Spatiotemporal SN (2006) Analysis of the molecular interaction between PICK1 and PKC. Acta Histochem Cytochem 39:173–181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by project of Chinese National Science and Technology Ministry (2012BAI32B03). We appreciate the contribution of Cathy Derow who carefully revised this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YongXun Ai or ChengLiang Xiong.

Additional information

Zhe Xiong and Yan Liu have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Z., Liu, Y., Hu, L. et al. A Rapid Facilitation of Acid-Sensing Ion Channels Current by Corticosterone in Cultured Hippocampal Neurons. Neurochem Res 38, 1446–1453 (2013). https://doi.org/10.1007/s11064-013-1045-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1045-9

Keywords

Navigation