Skip to main content

Advertisement

Log in

The Antiretroviral Protease Inhibitor Ritonavir Accelerates Glutathione Export from Cultured Primary Astrocytes

  • Original paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Antiretroviral protease inhibitors are a class of important drugs that are used for the treatment of human immunodeficiency virus infections. Among those compounds, ritonavir is applied frequently in combination with other antiretroviral protease inhibitors, as it has been reported to boost their therapeutic efficiency. To test whether ritonavir affects the viability and the glutathione (GSH) metabolism of brain cells, we have exposed primary astrocyte cultures to this protease inhibitor. Application of ritonavir in low micromolar concentrations did not compromise cell viability, but caused a time- and concentration-dependent loss of GSH from the cells which was accompanied by a matching increase in the extracellular GSH content. Half-maximal effects were observed for ritonavir in a concentration of 3 μM. The ritonavir-induced stimulated GSH export from astrocytes was completely prevented by MK571, an inhibitor of the multidrug resistance protein 1. In addition, continuous presence of ritonavir was essential to maintain the stimulated GSH export, since removal of ritonavir terminated the stimulated GSH export. Ritonavir was more potent to stimulate GSH export from astrocytes than the antiretroviral protease inhibitors indinavir and nelfinavir, but combinations of ritonavir with indinavir or nelfinavir did not further stimulate astrocytic GSH export compared to a treatment with ritonavir alone. The strong effects of ritonavir and other antiretroviral protease inhibitors on the GSH metabolism of astrocytes suggest that a chronic treatment of patients with such compounds may affect their brain GSH metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bazzoli C, Jullien V, Le Tiec C, Rey E, Mentre F, Taburet AM (2010) Intracellular pharmacokinetics of antiretroviral drugs in HIV-infected patients, and their correlation with drug action. Clin Pharmacokinet 49(1):17–45

    Article  PubMed  CAS  Google Scholar 

  2. Bartlett JA, DeMasi R, Quinn J, Moxham C, Rousseau F (2001) Overview of the effectiveness of triple combination therapy in antiretroviral-naive HIV-1 infected adults. AIDS 15(11):1369–1377

    Article  PubMed  CAS  Google Scholar 

  3. Flexner C (1998) HIV-protease inhibitors. N Eng J Med 338(18):1281–1292

    Article  CAS  Google Scholar 

  4. Durant J, Clevenbergh P, Garraffo R, Halfon P, Icard S, Del Giudice P, Montagne N, Schapiro JM, Dellamonica P (2000) Importance of protease inhibitor plasma levels in HIV-infected patients treated with genotypic-guided therapy: pharmacological data from the Viradapt Study. AIDS 14(10):1333–1339

    Article  PubMed  CAS  Google Scholar 

  5. Klabe RM, Bacheler LT, Ala PJ, Erickson-Viitanen S, Meek JL (1998) Resistance to HIV protease inhibitors: a comparison of enzyme inhibition and antiviral potency. Biochemistry 37(24):8735–8742

    Article  PubMed  CAS  Google Scholar 

  6. Eagling VA, Back DJ, Barry MG (1997) Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol 44(2):190–194

    Article  PubMed  CAS  Google Scholar 

  7. Cooper CL, van Heeswijk RP, Gallicano K, Cameron DW (2003) A review of low-dose ritonavir in protease inhibitor combination therapy. Clin Infect Dis 36(12):1585–1592

    Article  PubMed  CAS  Google Scholar 

  8. Wensing AM, van Maarseveen NM, Nijhuis M (2010) Fifteen years of HIV protease inhibitors: raising the barrier to resistance. Antiviral Res 85(1):59–74

    Article  PubMed  CAS  Google Scholar 

  9. Ford J, Khoo SH, Back DJ (2004) The intracellular pharmacology of antiretroviral protease inhibitors. J Antimicrob Chemother 54(6):982–990

    Article  PubMed  CAS  Google Scholar 

  10. Moyle GJ, Back D (2001) Principles and practice of HIV-protease inhibitor pharmacoenhancement. HIV Med 2(2):105–113

    Article  PubMed  CAS  Google Scholar 

  11. Hirrlinger J, Dringen R (2010) The cytosolic redox state of astrocytes: maintenance, regulation and functional implications for metabolite trafficking. Brain Res Rev 63(1–2):177–188

    Article  PubMed  CAS  Google Scholar 

  12. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121(1):4–27

    Article  PubMed  CAS  Google Scholar 

  13. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed  Google Scholar 

  14. Dienel GA (2012) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32(7):1107–1138

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt MM, Dringen R (2012) GSH synthesis and metabolism. In: Gruetter R, Choi IY (eds) Advances in neurobiology, vol neural metabolism in vivo. Springer, New York, pp 1029–1050

    Chapter  Google Scholar 

  16. Johnson WM, Wilson-Delfosse AL, Mieyal JJ (2012) Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4(10):1399–1440

    Article  PubMed  CAS  Google Scholar 

  17. Drukarch B, Schepens E, Jongenelen CA, Stoof JC, Langeveld CH (1997) Astrocyte-mediated enhancement of neuronal survival is abolished by glutathione deficiency. Brain Res 770(1–2):123–130

    Article  PubMed  CAS  Google Scholar 

  18. Gegg ME, Clark JB (1036) Heales SJ (2005) Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate–cysteine ligase activity. Brain Res 1–2:1–6

    Google Scholar 

  19. Gimenez F, Fernandez C, Mabondzo A (2004) Transport of HIV protease inhibitors through the blood–brain barrier and interactions with the efflux proteins, P-glycoprotein and multidrug resistance proteins. J Acquir Immune Defic Syndr 36(2):649–658

    Article  PubMed  CAS  Google Scholar 

  20. Anthonypillai C, Sanderson RN, Gibbs JE, Thomas SA (2004) The distribution of the HIV protease inhibitor, ritonavir, to the brain, cerebrospinal fluid, and choroid plexuses of the guinea pig. J Pharmacol Exp Ther 308(3):912–920

    Article  PubMed  CAS  Google Scholar 

  21. Hoetelmans RM, van Essenberg M, Profijt M, Meenhorst PL, Mulder JW, Beijnen JH (1998) High-performance liquid chromatographic determination of ritonavir in human plasma, cerebrospinal fluid and saliva. J Chromatogr B Biomed Sci Appl 705(1):119–126

    Article  PubMed  CAS  Google Scholar 

  22. Hsu A, Granneman GR, Bertz RJ (1998) Ritonavir. Clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet 35(4):275–291

    Article  PubMed  CAS  Google Scholar 

  23. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58(9):1094–1103

    Article  PubMed  Google Scholar 

  24. Brandmann M, Tulpule K, Schmidt MM, Dringen R (2012) The antiretroviral protease inhibitors indinavir and nelfinavir stimulate Mrp1-mediated GSH export from cultured brain astrocytes. J Neurochem 120(1):78–92

    Article  PubMed  CAS  Google Scholar 

  25. Hamprecht B, Löffler F (1985) Primary glial cultures as a model for studying hormone action. Methods Enzymol 109:341–345

    Article  PubMed  CAS  Google Scholar 

  26. Hirrlinger J, Dringen R (2005) Multidrug resistance protein 1-mediated export of glutathione and glutathione disulfide from brain astrocytes. Methods Enzymol 400:395–409

    Article  PubMed  CAS  Google Scholar 

  27. Dringen R, Kussmaul L, Hamprecht B (1998) Detoxification of exogenous hydrogen peroxide and organic hydroperoxides by cultured astroglial cells assessed by microtiter plate assay. Brain Res Protoc 2(3):223–228

    Article  CAS  Google Scholar 

  28. Scheiber IF, Schmidt MM, Dringen R (2010) Zinc prevents the copper-induced damage of cultured astrocytes. Neurochem Int 57(3):314–322

    Article  PubMed  CAS  Google Scholar 

  29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  30. Hohnholt MC, Dringen R (2011) Iron-dependent formation of reactive oxygen species and glutathione depletion after accumulation of magnetic iron oxide nanoparticles by oligodendroglial cells. J Nanopart Res 13(12):6761–6774

    Article  CAS  Google Scholar 

  31. Minich T, Riemer J, Schulz JB, Wielinga P, Wijnholds J, Dringen R (2006) The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem 97(2):373–384

    Article  PubMed  CAS  Google Scholar 

  32. Hirrlinger J, Schulz JB, Dringen R (2002) Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J Neurosci Res 69(3):318–326

    Article  PubMed  CAS  Google Scholar 

  33. Kranich O, Dringen R, Sandberg M, Hamprecht B (1998) Utilization of cysteine and cysteine precursors for the synthesis of glutathione in astroglial cultures: preference for cystine. Glia 22(1):11–18

    Article  PubMed  CAS  Google Scholar 

  34. Yoshiba-Suzuki S, Sagara J, Bannai S, Makino N (2011) The dynamics of cysteine, glutathione and their disulphides in astrocyte culture medium. J Biochem 150(1):95–102

    Article  PubMed  CAS  Google Scholar 

  35. Palmeira VF, Kneipp LF, Rozental S, Alviano CS, Santos AL (2008) Beneficial effects of HIV peptidase inhibitors on fonsecaea pedrosoi: promising compounds to arrest key fungal biological processes and virulence. PLoS ONE 3(10):e3382

    Article  PubMed  Google Scholar 

  36. Chandler B, Almond L, Ford J, Owen A, Hoggard P, Khoo S, Back D (2003) The effects of protease inhibitors and nonnucleoside reverse transcriptase inhibitors on p-glycoprotein expression in peripheral blood mononuclear cells in vitro. J Acquir Immune Defic Syndr 33(5):551–556

    Article  PubMed  CAS  Google Scholar 

  37. Wang X, Chai H, Lin PH, Yao Q, Chen C (2009) Roles and mechanisms of human immunodeficiency virus protease inhibitor ritonavir and other anti-human immunodeficiency virus drugs in endothelial dysfunction of porcine pulmonary arteries and human pulmonary artery endothelial cells. Am J Pathol 174(3):771–781

    Article  PubMed  CAS  Google Scholar 

  38. Lagathu C, Eustace B, Prot M, Frantz D, Gu Y, Bastard JP, Maachi M, Azoulay S, Briggs M, Caron M, Capeau J (2007) Some HIV antiretrovirals increase oxidative stress and alter chemokine, cytokine or adiponectin production in human adipocytes and macrophages. Antivir Ther 12(4):489–500

    PubMed  CAS  Google Scholar 

  39. Liddell JR, Dringen R, Crack PJ, Robinson SR (2006) Glutathione peroxidase 1 and a high cellular glutathione concentration are essential for effective organic hydroperoxide detoxification in astrocytes. Glia 54(8):873–879

    Article  PubMed  Google Scholar 

  40. Bishop GM, Dringen R, Robinson SR (2007) Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Free Radic Biol Med 42(8):1222–1230

    Article  PubMed  CAS  Google Scholar 

  41. He Z, Chen L, You J, Qin L, Chen X (2009) Antiretroviral protease inhibitors potentiate chloroquine antimalarial activity in malaria parasites by regulating intracellular glutathione metabolism. Exp Parasitol 123(2):122–127

    Article  PubMed  CAS  Google Scholar 

  42. Weakley SM, Jiang J, Lu J, Wang X, Lin PH, Yao Q, Chen C (2011) Natural antioxidant dihydroxybenzyl alcohol blocks ritonavir-induced endothelial dysfunction in porcine pulmonary arteries and human endothelial cells. Med Sci Monit 17(9):BR235–BR241

    Article  PubMed  CAS  Google Scholar 

  43. Schmidt MM, Dringen R (2009) Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes. Front Neuroenergetics 1:1–10

    PubMed  CAS  Google Scholar 

  44. Schmidt MM, Dringen R (2010) Fumaric acid diesters deprive cultured primary astrocytes rapidly of glutathione. Neurochem Int 57(4):460–467

    Article  PubMed  CAS  Google Scholar 

  45. Schmidt MM, Rohwedder A, Dringen R (2011) Effects of chlorinated acetates on the glutathione metabolism and on glycolysis of cultured astrocytes. Neurotox Res 19(4):628–637

    Article  PubMed  CAS  Google Scholar 

  46. Tulpule K, Dringen R (2011) Formaldehyde stimulates Mrp1-mediated glutathione deprivation of cultured astrocytes. J Neurochem 116(4):626–635

    Article  PubMed  CAS  Google Scholar 

  47. Olson DP, Scadden DT, D’Aquila RT, De Pasquale MP (2002) The protease inhibitor ritonavir inhibits the functional activity of the multidrug resistance related-protein 1 (MRP-1). AIDS 16(13):1743–1747

    Article  PubMed  CAS  Google Scholar 

  48. van der Sandt IC, Vos CM, Nabulsi L, Blom-Roosemalen MC, Voorwinden HH, de Boer AG, Breimer DD (2001) Assessment of active transport of HIV protease inhibitors in various cell lines and the in vitro blood–brain barrier. AIDS 15(4):483–491

    Article  PubMed  Google Scholar 

  49. Jones K, Bray PG, Khoo SH, Davey RA, Meaden ER, Ward SA, Back DJ (2001) P-Glycoprotein and transporter MRP1 reduce HIV protease inhibitor uptake in CD4 cells: potential for accelerated viral drug resistance? AIDS 15(11):1353–1358

    Article  PubMed  CAS  Google Scholar 

  50. Jones K, Hoggard PG, Sales SD, Khoo S, Davey R, Back DJ (2001) Differences in the intracellular accumulation of HIV protease inhibitors in vitro and the effect of active transport. AIDS 15(6):675–681

    Article  PubMed  CAS  Google Scholar 

  51. Kruh GD, Belinsky MG (2003) The MRP family of drug efflux pumps. Oncogene 22(47):7537–7552

    Article  PubMed  CAS  Google Scholar 

  52. Loe DW, Deeley RG, Cole SP (2000) Verapamil stimulates glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1). Journal Pharmacol Exp Ther 293(2):530–538

    CAS  Google Scholar 

  53. Rappa G, Lorico A, Flavell RA, Sartorelli AC (1997) Evidence that the multidrug resistance protein (MRP) functions as a co-transporter of glutathione and natural produce toxins. Cancer Res 57(23):5232–5237

    PubMed  CAS  Google Scholar 

  54. Liddell JR, Hoepken HH, Crack PJ, Robinson SR, Dringen R (2006) Glutathione peroxidase 1 and glutathione are required to protect mouse astrocytes from iron-mediated hydrogen peroxide toxicity. J Neurosci Res 84(3):578–586

    Article  PubMed  CAS  Google Scholar 

  55. Janáky R, Cruz-Aguado R, Oja SS, Shaw CA (2007) Glutathione in the nervous system: roles in neural function and health and implications for neurological disease. In: Oja SS, Shousboe A, Saransaari P (eds) Handbook of Neurochemistry, vol Amino Acids and Peptides in the Nervous System. Springer, Heidelberg, pp 347–399

    Google Scholar 

  56. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, McArthur JC, Collier AC, Evans SR, Ellis RJ (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21(14):1915–1921

    Article  PubMed  Google Scholar 

  57. Tozzi V, Balestra P, Bellagamba R, Corpolongo A, Salvatori MF, Visco-Comandini U, Vlassi C, Giulianelli M, Galgani S, Antinori A, Narciso P (2007) Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. J Acquir Immune Defic Syndr 45(2):174–182

    Article  PubMed  Google Scholar 

  58. Mothobi NZ, Brew BJ (2012) Neurocognitive dysfunction in the highly active antiretroviral therapy era. Curr Opin Infect Dis 25(1):4–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Tönjes-Vagt Stiftung for the generous financial support of this project and Ketki Tulpule (University of Bremen) for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Dringen.

Additional information

Christian Arend and Maria Brandmann contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arend, C., Brandmann, M. & Dringen, R. The Antiretroviral Protease Inhibitor Ritonavir Accelerates Glutathione Export from Cultured Primary Astrocytes. Neurochem Res 38, 732–741 (2013). https://doi.org/10.1007/s11064-013-0971-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-0971-x

Keywords

Navigation