Skip to main content

Advertisement

Log in

Oxygen Glucose Deprivation (OGD)/Re-Oxygenation-Induced In Vitro Neuronal Cell Death Involves Mitochondrial Cyclophilin-D/P53 Signaling Axis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxidative stress-induced neuronal cell death requires opening of the mitochondrial permeability transition pore. P53 mitochondrial translocation and association with Cyclophilin D (Cyp-D) is required for the pore opening. Here we tested this signaling axis in oxygen glucose deprivation (OGD)/re-oxygenation-induced in vitro neuronal death. Using mitochondrion immunoprecipitation, we found that p53 translocated to mitochondrion and associated with Cyp-D in SH-SY5Y cells exposed to (OGD)/re-oxygenation. Disruption of this complex by Cyp-D inhibitor Cyclosporine A (CsA), or by Cyp-D or p53 deficiency, significantly inhibited OGD/re-oxygenation-induced apoptosis-independent cell death. Conversely, over-expression of Cyp-D in SH-SY5Y cells caused spontaneous cell death, and these cells were more vulnerable to OGD/re-oxygenation. Finally, CsA or Cyp-D RNAi suppressed OGD/re-oxygenation-induced neuronal cell death in primary cultures. Together, our study suggests that OGD/re-oxygenation-induced in vitro cell death involves a mitochondrial Cyp-D/p53 signaling axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

OGD:

Oxygen glucose deprivation

Cyp-D:

Cyclophilin D

CsA:

Cyclosporine A

H2O2 :

Hydrogen peroxide

LDH:

Lactate dehydrogenase

mPTP:

Mitochondrial permeability transition pore

ROS:

Reactive oxygen species

NAC:

n-Acetyl cysteine

GFP:

Green fluorescence protein

MEFs:

Mouse embryonic fibroblasts

ANT:

Adenine nucleotide translocase

VDAC:

Voltage-dependent anion transporter

References

  1. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194. doi:10.1093/aob/mcf118

    Article  PubMed  CAS  Google Scholar 

  2. Almeida A, Delgado-Esteban M, Bolanos JP, Medina JM (2002) Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J Neurochem 81:207–217. doi:10.1046/j.1471-4159.2002.00827.x

    Article  PubMed  CAS  Google Scholar 

  3. Tavakoli-Far B, Rahbar-Roshandel N, Rahimi-Moghaddam P, Mahmoudian M (2009) Neuroprotective effects of mebudipine and dibudipine on cerebral oxygen-glucose deprivation/reperfusion injury. Eur J Pharmacol 610:12–17. doi:10.1016/j.ejphar.2009.03.017

    Article  PubMed  CAS  Google Scholar 

  4. Park JW, Jang YH, Kim JM, Lee H, Park WK, Lim MB, Chu YK, Lo EH, Lee SR (2009) Green tea polyphenol (−)-epigallocatechin gallate reduces neuronal cell damage and up-regulation of MMP-9 activity in hippocampal CA1 and CA2 areas following transient global cerebral ischemia. J Neurosci Res 87:567–575. doi:10.1002/jnr.21847

    Article  PubMed  CAS  Google Scholar 

  5. Yasui H, Asanuma T, Watanabe Y, Waki K, Inanami O, Kuwabara M (2007) Oral administration of antioxidant biofactor (AOBtrade mark) ameliorates ischemia/reperfusion- induced neuronal death in the gerbil. BioFactors 29:113–121

    Article  PubMed  CAS  Google Scholar 

  6. Martinez Sanchez G, Candelario-Jalil E, Giuliani A, Leon OS, Sam S, Delgado R, Nunez Selles AJ (2001) Mangifera indica L. extract (QF808) reduces ischaemia-induced neuronal loss and oxidative damage in the gerbil brain. Free Radic Res 35:465–473

    Article  PubMed  CAS  Google Scholar 

  7. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662. doi:10.1038/nature03434

    Article  PubMed  CAS  Google Scholar 

  8. Halestrap AP, Gillespie JP, O’Toole A, Doran E (2000) Mitochondria and cell death: a pore way to die? Symp Soc Exp Biol 52:65–80

    PubMed  CAS  Google Scholar 

  9. Halestrap AP (2006) Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 34:232–237. doi:10.1042/BST20060232

    Article  PubMed  CAS  Google Scholar 

  10. Halestrap A (2005) Biochemistry: a pore way to die. Nature 434:578–579. doi:10.1038/434578a

    Article  PubMed  CAS  Google Scholar 

  11. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658. doi:10.1038/nature03317

    Article  PubMed  CAS  Google Scholar 

  12. Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 102:12005–12010. doi:10.1073/pnas.0505294102

    Article  PubMed  CAS  Google Scholar 

  13. Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280:18558–18561. doi:10.1074/jbc.C500089200

    Article  PubMed  CAS  Google Scholar 

  14. Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84:153–166. doi:S0300908402013755

    Article  PubMed  CAS  Google Scholar 

  15. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149:1536–1548. doi:10.1016/j.cell.2012.05.014

    Article  PubMed  CAS  Google Scholar 

  16. Baumann K (2012) Cell death: multitasking p53 promotes necrosis. Nat Rev Mol Cell Biol 13:480–481. doi:10.1038/nrm3401

    Article  PubMed  CAS  Google Scholar 

  17. Ji C, Yang B, Yang Z, Tu Y, Yang YL, He L, Bi ZG (2012) Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway. Biochem Biophys Res Commun 425:825–829. doi:10.1016/j.bbrc.2012.07.160

    Article  PubMed  CAS  Google Scholar 

  18. Lopez E, Ferrer I (2000) Staurosporine- and H-7-induced cell death in SH-SY5Y neuroblastoma cells is associated with caspase-2 and caspase-3 activation, but not with activation of the FAS/FAS-L-caspase-8 signaling pathway. Brain Res Mol Brain Res 85:61–67. doi:S0169328X00002357

    Article  PubMed  CAS  Google Scholar 

  19. Karch J, Molkentin JD (2012) Is p53 the Long-Sought Molecular Trigger for Cyclophilin D-Regulated Mitochondrial Permeability Transition Pore Formation and Necrosis? Circ Res 111:1258–1260. doi:10.1161/CIRCRESAHA.112.280990

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants from the National Natural Science Foundation of China. Funding recourses have no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Conflict of Interest

There authors have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Gao.

Additional information

Li-Ping Zhao and Chao Ji two authors contribute equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, LP., Ji, C., Lu, PH. et al. Oxygen Glucose Deprivation (OGD)/Re-Oxygenation-Induced In Vitro Neuronal Cell Death Involves Mitochondrial Cyclophilin-D/P53 Signaling Axis. Neurochem Res 38, 705–713 (2013). https://doi.org/10.1007/s11064-013-0968-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-0968-5

Keywords

Navigation