Skip to main content
Log in

Arsenosugar Induced Blood and Brain Oxidative Stress, DNA Damage and Neurobehavioral Impairments

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of Arsenosugar on motor function and contextual memory-related to place and event; the extent of DNA damage and oxidative stress in male swiss albino mice was investigated. Passive avoidance test was used for memory test; rota motor test was used for motor function. Several biochemical parameters were used for assessing oxidative stress due to arsenosugar ingestion. Decreased passive avoidance time and decreased retention time in rotating rod indicated disruption of normal neurobehavior. Significant dose-dependent DNA damage was found in mice blood and brain. Decreased super oxide dismutase, increased lipid peroxidation, decreased protein sulfohydryl content, increased protein carbonyl content in blood and hippocampal tissue; glutathione in blood and glutathione peroxidase in hippocampal tissue indicated the ability of arsenosugar to cause oxidative stress. This study concludes with evidence that arsenosugar ingestion causes higher oxidative stress, increases DNA damage in the blood and hippocampus in vivo. This might be responsible for the dysfunction of cognitive and motor functions. However, further investigation is suggested for deciphering the biomolecular mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shimbo S, Hayase A, Murakami M, Hatai I, Higashikawa K, Moon CS, Zhang ZW, Watanabe T, Iguchi H, Ikeda M (1996) Use of a food composition database to estimate daily dietary intake of nutrient or trace elements in Japan, with reference to its limitation. Food Addit Contam 13:775–786

    Article  PubMed  CAS  Google Scholar 

  2. Hansen HR, Raab A, Francesconi KA, Feldmann J (2003) Metabolism of arsenic by sheep chronically exposed to arseno-sugars as a normal part of their diet: quantitative intake, uptake and excretion. Environ Sci Technol 37:845–851

    Article  PubMed  CAS  Google Scholar 

  3. Andrewes P, Demarini DM, Funasaka K, Wallace K, Lai VW, Sun H, Cullen WR, Kitchin KT (2004) Do arsenosugars pose a risk to human health? the comparative toxicities of a trivalent and pentavalent arsenosugar. Environ Sci Technol 38:4140–4148

    Article  PubMed  CAS  Google Scholar 

  4. WHO (1989) Evaluation of certain food additives and contaminants; 33rd Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO: Geneva

  5. Francesconi KA, Tanggaar R, McKenzie CJ, Goessler W (2002) Arsenic metabolites in human urine after ingestion of an arsenosugar. Clin Chem 48:92–101

    PubMed  CAS  Google Scholar 

  6. Ma M, Le XC (1998) Effect of arsenosugar ingestion on urinary arsenic speciation. Clin Chem 44:539–550

    PubMed  CAS  Google Scholar 

  7. Le XC, Cullen WR, Reimer KJ (1994) Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp. Clin Chem 40:617–624

    PubMed  CAS  Google Scholar 

  8. Wei C, Li W, Zhang C, Van Hulle M, Cornelis R, Zhang X (2003) Safety evaluation of organoarsenical species in edible porphyra from the China Sea. J Agric Food Chem 51:5176–5182

    Article  PubMed  CAS  Google Scholar 

  9. Erickson BE (2003) New concerns about arsenosugars in seaweed and shellfish. Environ Sci Technol 37:84A

    Article  Google Scholar 

  10. Koch I, McPherson K, Smith P, Easton L, Doe KG, Reimer KJ (2007) Arsenic bioaccessibility and speciation in clams and seaweed from a contaminated marine environment. Mar Pollut Bull 54:586–594

    Article  PubMed  CAS  Google Scholar 

  11. Ha SH, Yeun JH, Kim J, Joo JD, Lee LY (2009) New synthetic method of natural arsenosugar. Bull Korean Chem Soc 30:997–998

    Article  CAS  Google Scholar 

  12. World Medical Association Declaration of Helsinki. Ethical Principles for Medical Research Involving Human Subjects. Adopted by the 18th WMA General Assembly, Helsinki, Finland, June 1964, and amended by the 59th WMA General Assembly Seoul, South Korea, October, 2008. http://www.wma.net/en/30publications/10policies/b3/index.html. Accessed 1 August, 2012

  13. Piala JJ, High JP, Hessert JLJ, Burke JC, Crower BN (1959) Pharmacological and acute toxicological comparisons of trifluoropromazine and chlorpromazine. J Pharmacol Exp Ther 127:55–65

    PubMed  CAS  Google Scholar 

  14. Kuribara H, Higuchi Y, Tadokoro S (1977) Effects of central depressants on rotarod and tractionperformances in mice. Jpn J Pharmacol 27:117–126

    Article  PubMed  CAS  Google Scholar 

  15. Dunham NW, Meya TS (1957) A note on simple apparatus for detecting neurological defects in rats and mice. J Am Pharm Assoc 46:208–209

    CAS  Google Scholar 

  16. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  PubMed  CAS  Google Scholar 

  17. Nadin SB, Vargas-Roig LM, Ciocca DR (2001) A silver staining method for single cell gel assay. J Histochem Cytochem 49:1183–1186

    Article  PubMed  CAS  Google Scholar 

  18. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  19. Samir M, el-Kholy NM (1999) Thiobarbituric acid reactive substances in patients with laryngeal cancer. Clin Otolaryngol Allied Sci 24:232–234

    Article  PubMed  CAS  Google Scholar 

  20. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  21. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  22. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  23. Flora SJS, Bhadauria S, Panta SC, Dhaked RK (2005) Arsenic induced blood and brain oxidative stress and its response to some thiol chelators in rats. Life Sci 77:2324–2337

    Article  PubMed  CAS  Google Scholar 

  24. Jollow DJ, Mitchell JR, Zamppaglione Z, Gillette JR (1974) Bromobenzene induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolites. Pharmacology 11:151–157

    Article  PubMed  CAS  Google Scholar 

  25. Klaassen CD, Watkins JB (2003) Casarett and Doull’s essentials of toxicology. McGraw-Hill: New York. p 512. ISBN. 978-0-07-138914–3

  26. McAdam DP, Perera AMA, Stick RV (1987) The synthesis of (R)-2′,3′-dihydroxypropyl 5-deoxy-5-dimethylarsinyl-β-D-riboside, a naturally occurring arsenic-containing carbohydrate. Aust J Chem 40:1901–1908

    Article  CAS  Google Scholar 

  27. Stick RV, Stubbs KA, Tilbrook DMG (2001) An improved synthesis of (R)-2,3-dihydroxypropyl 5-deoxy-5-dimethylarsinyl-β-D-riboside, a common marine arsenical. Aust J Chem 54:181–183

    Article  CAS  Google Scholar 

  28. Cullen WR, McBride BC, Reglinski J (1984) The reduction of trimethylarsine oxide to trimethylarsine by thiols: a mechanistic model for the biological reduction of arsenical. J Inorg Biochem 21:45–60

    Article  CAS  Google Scholar 

  29. Kannan GM, Tripathi N, Dube SN, Gupta M, Flora SJ (2001) Toxic effects of arsenic (III) on some hematopoietic and central nervous system variables in rats and guinea pigs. J Toxicol Clin Toxicol 39:675–682

    Article  PubMed  CAS  Google Scholar 

  30. Warburton DM (1975) Brain, behaviour and drugs. Wiley, London

    Google Scholar 

  31. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodesd CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107

    PubMed  CAS  Google Scholar 

  32. Münch G, Mayer S, Michaelis J, Hipkiss AR, Riederer P, Müller R, Neumann A, Schinzel R, Cunningham AM (1997) Influence of advanced glycation end-products and AGE-inhibitors on nucleation-dependent polymerization of beta-amyloid peptide. Biochim Biophys Acta 1360:17–29

    Article  PubMed  Google Scholar 

  33. Münch G, Deuther-Conrad W, Gasic-Milenkovic J (2002) Glycoxidative stress creates a vicious cycle of neurodegeneration in alzheimer’s disease–a target for neuroprotective treatment strategies? J Neural Transm Suppl 620:303–307

    Google Scholar 

  34. Gong G, O’Bryant SE (2010) The arsenic exposure hypothesis for alzheimer disease. Alzheimer Dis Assoc Disord 24:311–316

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first and corresponding author (Muhammad Shahdaat Bin Sayeed) was awarded travel grant for presenting partial result of the study in the 35th Annual Meeting of Japan Neuroscience Society, 18-21 September, 2012 in Nagoya, Japan.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shahdaat Bin Sayeed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bin Sayeed, M.S., Ratan, M., Hossen, F. et al. Arsenosugar Induced Blood and Brain Oxidative Stress, DNA Damage and Neurobehavioral Impairments. Neurochem Res 38, 405–412 (2013). https://doi.org/10.1007/s11064-012-0934-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0934-7

Keywords

Navigation