Skip to main content

Advertisement

Log in

Amyloid-β Protein Modulates Insulin Signaling in Presynaptic Terminals

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Synaptic loss is a major neuropathological correlate of memory decline as a result of Alzheimer’s disease (AD). This phenomenon appears to be aggravated by soluble amyloid-β (Aβ) oligomers causing presynaptic terminals to be particularly vulnerable to damage. Furthermore, insulin is known to participate in synaptic plasticity through the activation of the insulin receptor (IR) and the PI3K signaling pathway, while low concentrations of soluble Aβ and Aβ oligomers aberrantly modulate IR function in cultured neurons. To further examine how Aβ and insulin interact in the pathology of AD, the present work analyzes the effect of insulin and Aβ in the activation of the IR/PI3K pathway in synaptosomes. We found that insulin increased mitochondrial activity and IR/Akt phosphorylation in synaptosomes taken from both hippocampus and cortex. Also, pretreatment with Aβ antagonized insulin’s effect on hippocampal synaptosomes, but not vice versa. These results show that Aβ can reduce responsiveness to insulin. Combined with evidence that insulin desensitization can increase the risk of developing AD, our results suggest that the initial mechanism that impairs synaptic maintenance in AD might start with Aβ changes in insulin sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464

    Article  PubMed  CAS  Google Scholar 

  2. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  PubMed  CAS  Google Scholar 

  3. DeKosky ST, Scheff SW, Styren SD (1996) Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 5:417–421 (review)

    Article  PubMed  CAS  Google Scholar 

  4. Gomez-Isla T, West HL, Rebeck GW, Harr SD, Growdon JH, Locascio JJ, Perls TT, Lipsitz LA, Hyman BT (1996) Clinical and pathological correlates of apolipoprotein E epsilon 4 in Alzheimer’s disease. Ann Neurol 39:62–70

    Article  PubMed  CAS  Google Scholar 

  5. Masliah E (2001) Recent advances in the understanding of the role of synaptic proteins in Alzheimer’s disease and other neurodegenerative disorders. J Alzheimer’s Dis 3:121–129

    CAS  Google Scholar 

  6. Coleman PD, Yao PJ (2003) Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging 24:1023–1027

    Article  PubMed  CAS  Google Scholar 

  7. Shen J (2010) Impaired neurotransmitter release in Alzheimer’s and Parkinson’s diseases. Neurodegener Dis 7:80–83

    Article  PubMed  CAS  Google Scholar 

  8. Klein WL, Krafft GA, Finch CE (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224 (review)

    Article  PubMed  CAS  Google Scholar 

  9. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  10. Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52:831–843

    Article  PubMed  CAS  Google Scholar 

  11. Zhao XL, Wang WA, Tan JX, Huang JK, Zhang X, Zhang BZ, Wang YH, YangCheng HY, Zhu HL, Sun XJ, Huang FD (2010) Expression of beta-amyloid induced age-dependent presynaptic and axonal changes in Drosophila. J Neurosci 30:1512–1522

    Article  PubMed  CAS  Google Scholar 

  12. Mungarro-Menchaca X, Ferrera P, Morán J, Arias C (2002) Beta-amyloid peptide induces ultrastructural changes in synaptosomes and potentiates mitochondrial dysfunction in the presence of ryanodine. J Neurosci Res 68:89–96

    Article  PubMed  CAS  Google Scholar 

  13. Unger J, McNeill TH, Moxley RT 3rd, White M, Moss A, Livingston JN (1989) Distribution of insulin receptor-like immunoreactivity in the rat forebrain. Neuroscience 31:143–157

    Article  PubMed  CAS  Google Scholar 

  14. Abbott MA, Wells DG, Fallon JR (1999) The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J Neurosci 19:7300–7308

    PubMed  CAS  Google Scholar 

  15. Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274:34893–34902

    Article  PubMed  CAS  Google Scholar 

  16. Luchsinger JA, Mayeux R (2004) Cardiovascular risk factors and Alzheimer’s disease. Curr Atheroscler Rep 6:261–266

    Article  PubMed  Google Scholar 

  17. Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimer’s Dis 8:247–268

    CAS  Google Scholar 

  18. Craft S (2007) Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res 4:147–152 (review)

    Article  PubMed  CAS  Google Scholar 

  19. Craft S, Asthana S, Newcomer JW, Wilkinson CW, Matos IT, Baker LD, Cherrier M, Lofgreen C, Latendresse S, Petrova A, Plymate S, Raskind M, Grimwood K, Veith RC (1999) Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry 56:1135–1140

    Article  PubMed  CAS  Google Scholar 

  20. Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL (2001) Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74:270–280

    Article  PubMed  CAS  Google Scholar 

  21. Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, Plymate SR, Cherrier MM, Schellenberg GD, Frey WH II, Craft S (2008) Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimer’s Dis 13:323–331

    CAS  Google Scholar 

  22. Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signaling. Neurobiol Aging 31:224–243

    Article  PubMed  CAS  Google Scholar 

  23. Frölich L, Blum-Degen D, Bernstein H-G, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A, Türk A, Hoyer S, Zöchling R, Boissl K, Jellinger K, Riederer P (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105:423–438

    Article  PubMed  Google Scholar 

  24. Biessels G (2002) Ageing and diabetes: implications for brain function. Eur J Pharmacol 441:1–14

    Article  PubMed  CAS  Google Scholar 

  25. Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481

    Article  PubMed  CAS  Google Scholar 

  26. Townsend M, Mehta T, Selkoe DJ (2007) Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem 282:33305–33312

    Article  PubMed  CAS  Google Scholar 

  27. Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22:246–260

    Article  PubMed  CAS  Google Scholar 

  28. Löscher W, Böhme G, Müller F, Pagliusi S (1985) Improved method for isolating synaptosomes from 11 regions of one rat brain: electron microscopic and biochemical characterization and use in the study of drug effects on nerve terminal gamma-aminobutyric acid in vivo. J Neurochem 45:879–889

    Article  PubMed  Google Scholar 

  29. Mossman T (1983) Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxicity. J Immunol Methods 65:55–63

    Article  Google Scholar 

  30. Hers I, Bell CJ, Poole AW, Jiang D, Denton RM, Schaefer E, Tavaré JM (2002) Reciprocal feedback regulation of insulin receptor and insulin receptor substrate tyrosine phosphorylation by phosphoinositide 3-kinase in primary adipocytes. Biochem J 368:875–884

    Article  PubMed  CAS  Google Scholar 

  31. Gual P, Le Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87:99–109 (review)

    Article  PubMed  CAS  Google Scholar 

  32. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    PubMed  CAS  Google Scholar 

  33. Chiu SL, Chen CM, Cline HT (2008) Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58:708–719

    Article  PubMed  CAS  Google Scholar 

  34. Huang TJ, Verkhratsky A, Fernyhough P (2005) Insulin enhances mitochondrial inner membrane potential and increases ATP levels through phosphoinositide 3-kinase in adult sensory neurons. Mol Cell Neurosci 28:42–54

    Article  PubMed  CAS  Google Scholar 

  35. Benomar Y, Naour N, Aubourg A, Bailleux V, Gertler A, Djiane J, Guerre-Millo M, Taouis M (2006) Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase-dependent mechanism. Endocrinology 147:2550–2556

    Article  PubMed  CAS  Google Scholar 

  36. Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA (2000) Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA 97:10236–10241

    Article  PubMed  CAS  Google Scholar 

  37. Pearce LR, Komander D, Alessi DR (2010) The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 11:9–22 (review)

    Article  PubMed  CAS  Google Scholar 

  38. Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R (2002) Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 22:RC221

    PubMed  Google Scholar 

  39. Lee HK, Kumar P, Fu Q, Rosen KM, Querfurth HW (2009) The insulin/Akt signaling pathway is targeted by intracellular beta-amyloid. Mol Biol Cell 20:1533–1544

    Article  PubMed  CAS  Google Scholar 

  40. Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, O’Connor R, O’Neill C (2005) Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J Neurochem 93:105–117

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CONACYT and PAPIIT, UNAM. David Heras-Sandoval is supported by CONACYT 217779 and is currently in the PhD program: Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clorinda Arias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heras-Sandoval, D., Ferrera, P. & Arias, C. Amyloid-β Protein Modulates Insulin Signaling in Presynaptic Terminals. Neurochem Res 37, 1879–1885 (2012). https://doi.org/10.1007/s11064-012-0800-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0800-7

Keywords

Navigation