Skip to main content
Log in

The Effects of Antidepressants on Mitochondrial Function in a Model Cell System and Isolated Mitochondria

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The in vitro effects of antidepressant drugs on mitochondrial function were investigated in a CHOβ2SPAP cell line used previously to determine the effects of antidepressants on gene transcription (Abdel-Razaq et al., Biochem Pharmacol 73:1995–2003, 2007) and in rat heart isolated mitochondria. Apoptotic effects of clomipramine (CLOM), desipramine (DMI) and of norfluoxetine (NORF, the active metabolite of fluoxetine), on cellular viability were indicated by morphological changes and concentration-dependent increases in caspase-3 activity in CHO cells after 18 h exposure to CLOM, DMI and NORF. However, tianeptine (TIAN) was without effect. CLOM and NORF both reduced integrated mitochondrial function as shown by marked reductions in membrane potential (MMP) in mitochondria isolated from rat hearts. DMI also showed a similar but smaller effect, whereas, TIAN did not elicit any significant change in MMP. Moreover, micromolar concentrations of CLOM, DMI and NORF caused significant inhibitions of the activities of mitochondrial complexes (I, II/III and IV). The inhibitory effects on complex IV activity were most marked. TIAN inhibited only complex I activity at concentrations in excess of 20 μM. The observed inhibitory effects of antidepressants on the mitochondrial complexes were accompanied by a significant decrease in the mitochondrial state-3 respiration at concentrations above 10 μM. The results demonstrate that the apoptotic cell death observed in antidepressant-treated cells could be due to disruption of mitochondrial function resulting from multiple inhibition of mitochondrial enzyme complexes. The possibility that antimitochondrial actions of antidepressants could provide a potentially protective pre-conditioning effect is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tardito D, Perez J, Tiraboschi E, Musazzi L, Racagni G, Popoli M (2006) Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview. Pharmacol Rev 58:115–134

    Article  CAS  PubMed  Google Scholar 

  2. Manfredi G, Beal MF (2000) The role of mitochondria in the pathogenesis of neurodegenerative diseases. Brain Pathol 10:462–472

    Article  CAS  PubMed  Google Scholar 

  3. Naoi M, Yi H, Shamoto-Nagai M, Akao Y, Maruyama W, Tanaka M (2005) Oxidative stress in mitochondria: decision to survival and death of neurons in neurodegenerative disorders. Mol Neurobiol 31:81–93

    Article  CAS  PubMed  Google Scholar 

  4. Orth M, Schapira AH (2001) Mitochondria and degenerative disorders. Am J Med Genet 106:27–36

    Article  CAS  PubMed  Google Scholar 

  5. Wittenhagen LM, Kelley SO (2002) Dimerization of a pathogenic human mitochondrial tRNA. Nat Struct Biol 9:586–590

    CAS  PubMed  Google Scholar 

  6. Bates TE, Heales SJ, Davies SE, Boakye P, Clark JB (1994) Effects of 1-methyl-4-phenylpyridinium on isolated rat brain mitochondria: evidence for a primary involvement of energy depletion. J Neurochem 63:640–648

    Article  CAS  PubMed  Google Scholar 

  7. Calabrese V, Bates TE, Stella AM (2000) NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance. Neurochem Res 25:1315–1341

    Article  CAS  PubMed  Google Scholar 

  8. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  CAS  PubMed  Google Scholar 

  9. Sammut IA, Jayakumar J, Latif N, Rothery S, Severs NJ, Smolenski RT, Bates TE, Yacoub MH (2001) Heat stress contributes to the enhancement of cardiac mitochondrial complex activity. Am J Pathol 158:1821–1831

    CAS  PubMed  Google Scholar 

  10. Odawara M (2002) Mitochondrial gene abnormalities as a cause of psychiatric diseases. Nucleic Acids Symp Ser 2:253–254

    CAS  Google Scholar 

  11. Wallace DC (1992) Diseases of the mitochondrial DNA. Annu Rev Biochem 61:1175–1212

    Article  CAS  PubMed  Google Scholar 

  12. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308

    Article  CAS  PubMed  Google Scholar 

  13. Gardner A, Boles RG (2010) Beyond the serotonin hypothesis: Mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry (in press)

  14. Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disorders 2:180–190

    Article  CAS  PubMed  Google Scholar 

  15. Deicken RF, Weiner MW, Fein G (1995) Decreased temporal lobe phosphomonoesters in bipolar disorder. J Affect Disord 33:195–199

    Article  CAS  PubMed  Google Scholar 

  16. Kato T, Inubushi T, Takahashi S, Shioiri T (1993) Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 27:53–59

    Article  CAS  PubMed  Google Scholar 

  17. Daley E, Wilkie D, Loesch A, Hargreaves IP, Kendall DA, Pilkington GJ, Bates TE (2005) Chlorimipramine: a novel anticancer agent with a mitochondrial target. Biochem Biophys Res Commun 328:623–632

    Article  CAS  PubMed  Google Scholar 

  18. Iwamoto K, Bundo M, Kato T (2005) Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 14:241–253

    Article  CAS  PubMed  Google Scholar 

  19. Munakata K, Kato T, Iwamoto K, Bundo M (2005) Mitochondrial DNA 3243A > G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol Psychiatry 57:525–532

    Article  CAS  PubMed  Google Scholar 

  20. Abdel-Razaq W, Bates TE, Kendall DA (2007) The effects of antidepressants on cyclic AMP-response element-driven gene transcription in a model cell system. Biochem Pharmacol 73:1995–2003

    Article  CAS  PubMed  Google Scholar 

  21. Otczyk M, Mulik K, Budziszewska B, Jaworska-Feil L, Basta-Kaim A, Kubera M, Jagla G, Nowak W, Lason W (2008) Effect of some antidepressants on the low corticosterone concentration-induced gene transcription in LMCAT fibroblast cells. J Physiol Pharmacol 59:153–162

    CAS  PubMed  Google Scholar 

  22. Pariante CM, Kim RB, Makoff A, Kerwin RW (2003) Antidepressant fluoxetine enhances glucocorticoid receptor function in vitro by modulating membrane steroid transporters. Br J Pharmacol 139:1111–1118

    Article  CAS  PubMed  Google Scholar 

  23. Richards JK, Abdel-Razaq W, Bates TE, Kendall DA (2005) The effects of desmethylimipramine on cyclic AMP-stimulated gene transcription in a model cell system. Biochem Pharmacol 70:762–769

    Article  CAS  PubMed  Google Scholar 

  24. Karlsson H, Gu Y, DePierre J, Nassberger L (1998) Induction of apoptosis in proliferating lymphocytes by tricyclic antidepressants. Apoptosis 3:255–260

    Article  CAS  PubMed  Google Scholar 

  25. Levkovitz Y, Gil-Ad I, Zeldich E, Dayag M, Weizman A (2005) Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines: evidence for p–c-Jun, cytochrome c, and caspase-3 involvement. J Mol Neurosci 27:29–42

    Article  CAS  PubMed  Google Scholar 

  26. Xia Z, Lundgren B, Bergstrand A, DePierre JW, Nassberger L (1999) Changes in the generation of reactive oxygen species and in mitochondrial membrane potential during apoptosis induced by the antidepressants imipramine, clomipramine, and citalopram and the effects on these changes by Bcl-2 and Bcl-X(L). Biochem Pharmacol 57:1199–1208

    Article  CAS  PubMed  Google Scholar 

  27. Lee JM, Peuler JD (2001) A possible indirect sympathomimetic action of metformin in the arterial vessel wall of spontanously hypertensive rats. Life Sci 69:1085–1092

    Article  CAS  PubMed  Google Scholar 

  28. Li YF, Luo ZP (2002) Desipramine antagonized corticosterone-induced apoptosis in cultured PC12 cells. Acta Pharmacol Sin 23:311–314

    CAS  PubMed  Google Scholar 

  29. Lucassen PJ, Fuchs E, Czeh B (2004) Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry 55:789–796

    Article  CAS  PubMed  Google Scholar 

  30. McDonnell J, Latif ML, Rees ES, Bevan NJ, Hill SJ (1998) Influence of receptor number on the stimulation by salmeterol of gene transcription in CHO-K1 cells transfected with the human beta2-adrenoceptor. Br J Pharmacol 125:717–726

    Article  CAS  PubMed  Google Scholar 

  31. Kristian T, Gertsch J, Bates TE, Siesjo BK (2000) Characteristics of the calcium-triggered mitochondrial permeability transition in nonsynaptic brain mitochondria: effect of cyclosporin A and ubiquinone O. J Neurochem 74:1999–2009

    Article  CAS  PubMed  Google Scholar 

  32. Athanasiou A, Smith PA, Vakilpour S, Kumaran NM, Turner AE, Bagiokou D, Layfield R, Ray DE, Westwell AD, Alexander SP, Kendall DA, Lobo DN, Watson SA, Lophatanon A, Muir KA, Guo DA, Bates TE (2007) Vanilloid receptor agonists and antagonists are mitochondrial inhibitors: how vanilloids cause non-vanilloid receptor mediated cell death. Biochem Biophys Res Commun 354:50–55

    Article  CAS  PubMed  Google Scholar 

  33. Bates TE, Almeida A, Heales SJ, Clark JB (1994) Postnatal development of the complexes of the electron transport chain in isolated rat brain mitochondria. Dev Neurosci 16:321–327

    Article  CAS  PubMed  Google Scholar 

  34. Raspotnig G, Fauler G, Jantscher A, Windischhofer W, Schachl K, Leis HJ (1999) Colorimetric determination of cell numbers by Janus green staining. Anal Biochem 275:74–83

    Article  CAS  PubMed  Google Scholar 

  35. Sandau KB, Callsen D, Brune B (1999) Protection against nitric oxide-induced apoptosis in rat mesangial cells demands mitogen-activated protein kinases and reduced glutathione. Mol Pharmacol 56:744–751

    CAS  PubMed  Google Scholar 

  36. Martinou JC, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2:63–67

    Article  CAS  PubMed  Google Scholar 

  37. Stuart RA, Cyr DM, Neupert W (1994) Hsp70 in mitochondrial biogenesis: from chaperoning nascent polypeptide chains to facilitation of protein degradation. Experientia 50:1002–1011

    Article  CAS  PubMed  Google Scholar 

  38. Eto K, Inoue B, Ogata M, Fukuda T, Araki Y (1985) Effect of tricyclic drugs on mitochondrial membrane. Acta Med Okayama 39:289–295

    CAS  PubMed  Google Scholar 

  39. Katyare SS, Rajan RR (1995) Effect of long-term in vivo treatment with imipramine on the oxidative energy metabolism in rat brain mitochondria. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 112:353–357

    Article  CAS  PubMed  Google Scholar 

  40. Qi H, Chen HZ, Jin ZJ (2002) Caspase 3 gene expression and [Ca2 +]i homeostasis underlying desipramine-induced C6 glioma cell apoptosis. Acta Pharmacol Sin 23:803–807

    CAS  PubMed  Google Scholar 

  41. Koch JM, Kell S, Aldenhoff JB (2003) Differential effects of fluoxetine and imipramine on the phosphorylation of the transcription factor CREB and cell-viability. J Psychiatr Res 37:53–59

    Article  PubMed  Google Scholar 

  42. Xia Z, Bergstrand A, DePierre JW, Nassberger L (1999) The antidepressants imipramine, clomipramine, and citalopram induce apoptosis in human acute myeloid leukemia HL-60 cells via caspase-3 activation. J Biochem Mol Toxicol 13:338–347

    Article  CAS  PubMed  Google Scholar 

  43. Hroudova J, Fisar Z (2010) Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuro Endocrinol Lett 31:336–342

    CAS  PubMed  Google Scholar 

  44. Hargreaves IP, Duncan AJ, Wu L, Agrawal A, Land JM, Heales SJ (2007) Inhibition of mitochondrial complex IV leads to secondary loss complex II-III activity: implications for the pathogenesis and treatment of mitochondrial encephalomyopathies. Mitochondrion 7:284–287

    Article  CAS  PubMed  Google Scholar 

  45. Heales SJ, Davies SE, Bates TE, Clark JB (1995) Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration. Neurochem Res 20:31–38

    Article  CAS  PubMed  Google Scholar 

  46. Canevari L, Clark JB, Bates TE (1999) beta-Amyloid fragment 25–35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett 457:131–134

    Article  CAS  PubMed  Google Scholar 

  47. Saada A, Bar-Meir M, Belaiche C, Miller C, Elpeleg O (2004) Evaluation of enzymatic assays and compounds affecting ATP production in mitochondrial respiratory chain complex I deficiency. Anal Biochem 335:66–72

    Article  CAS  PubMed  Google Scholar 

  48. Fromenty B, Freneaux E, Labbe G, Deschamps D, Larrey D, Letteron P, Pessayre D (1989) Tianeptine, a new tricyclic antidepressant metabolized by beta-oxidation of its heptanoic side chain, inhibits the mitochondrial oxidation of medium and short chain fatty acids in mice. Biochem Pharmacol 38:3743–3751

    Article  CAS  PubMed  Google Scholar 

  49. Stryer L (1995) Biochemistry, 4th edn. Chapter 21: Oxidative phosphorylation. W.H. Freeman & Company, San Francisco

  50. Athanasiou A, Clarke AB, Turner AE, Kumaran NM, Vakilpour S, Smith PA, Bagiokou D, Bradshaw TD, Westwell AD, Fang L, Lobo DN, Constantinescu CS, Calabrese V, Loesch A, Alexander SP, Clothier RH, Kendall DA, Bates TE (2007) Cannabinoid receptor agonists are mitochondrial inhibitors: a unified hypothesis of how cannabinoids modulate mitochondrial function and induce cell death. Biochem Biophys Res Commun 364:131–137

    Article  CAS  PubMed  Google Scholar 

  51. Calabrese V, Scapagnini G, Giuffrida Stella AM, Bates TE, Clark JB (2001) Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem Res 26:739–764

    Article  CAS  PubMed  Google Scholar 

  52. Tachibana K, Matsumoto M, Koseki H, Togashi H, Kojima T, Morimoto Y, Yoshioka M (2006) Electrophysiological and neurochemical characterization of the effect of repeated treatment with milnacipran on the rat serotonergic and noradrenergic systems. J Psychopharmacol 20:562–569

    Article  CAS  PubMed  Google Scholar 

  53. Darley-Usmar V (2004) The powerhouse takes control of the cell; the role of mitochondria in signal transduction. Free Radic Biol Med 37:753–754

    Article  CAS  PubMed  Google Scholar 

  54. Arnould T, Vankoningsloo S, Renard P, Houbion A, Ninane N, Demazy C, Remacle J, Raes M (2002) CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J 21:53–63

    Article  CAS  PubMed  Google Scholar 

  55. Parikh VS, Morgan MM, Scott R, Clements LS, Butow RA (1987) The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235:576–580

    Article  CAS  PubMed  Google Scholar 

  56. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    Article  CAS  PubMed  Google Scholar 

  57. Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13:1763–1811

    Article  CAS  PubMed  Google Scholar 

  58. Dirnagl U, Meisel A (2008) Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning? Neuropharmacology 55(3):334–344

    Article  CAS  PubMed  Google Scholar 

  59. Riepe MW, Ludolph AC (1997) Chemical preconditioning: a cytoprotective strategy. Mol Cell Biochem 174:249–254

    Article  CAS  PubMed  Google Scholar 

  60. González-Pardo H, Conejo NM, Arias JL, Monleon S, Vinader-Caerols C, Parra A (2008) Changes in brain oxidative metabolism induced by inhibitory avoidance learning and acute administration of amitriptyline. Pharmacol Biochem Behav 89:456–462

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the Hashemite University (Jordan) and the University of Nottingham (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Abdel-Razaq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Razaq, W., Kendall, D.A. & Bates, T.E. The Effects of Antidepressants on Mitochondrial Function in a Model Cell System and Isolated Mitochondria. Neurochem Res 36, 327–338 (2011). https://doi.org/10.1007/s11064-010-0331-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0331-z

Keywords

Navigation