Skip to main content

Advertisement

Log in

Enhanced Synaptic Vesicle Traffic in Hippocampus of Phenytoin-Resistant Kindled Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Aim: Intractable epilepsy is characterized of seizure resistance to the anti-epileptic drugs. The underlying mechanisms are still elusive. Alterations of synaptic vesicle traffic may be one of the candidate mechanisms. Methods: Phenytoin-resistant and phenytoin-non resistant epileptic rats were selected in the amygdala kindled adult male Wistar rats. Synaptotagmin-I and clathrin were determined by cDNA microarry analysis and Western blotting in the hippocampus of phenytoin-resistant and phenytoin-nonresistant kindled rats, which were associated with the exocytosis and endocytosis of the synaptic vesicle traffic. Results: Microarry analysis showed both synaptotagmin-I and clathrin mRNA were up-regulated at least 3.06 fold accompanied with their correspondent proteins increased by 52.3 ± 6.4 % and 76.7 ± 12.4 % respectively in the hippocampus of phenytoin-resistant rats as compared with those in phenytoin-nonresistant rats. There were no significant differences in plasma phenytoin concentrations between the two groups. Conclusions: The increased expressions of synaptotagmin-I and clathrin in the hippocampus of phenytoin-resistant kindled rats play a role in the development of intractable epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sperling MR (2004) The consequences of uncontrolled epilepsy. CNS Spectr 9:98–99

    PubMed  Google Scholar 

  2. Hui E, Bai J, Chapman ER (2006) Ca2+ -triggered simultaneous membrane penetration of the tandem C2-domains of Synaptotagmin I. Biophys J 91(5):1767–1777. doi:10.1529/biophysj.105.080325

    Article  PubMed  CAS  Google Scholar 

  3. Yoshihara M, Littleton JT (2002) Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release. Neuron 36:897–908. doi:10.1016/S0896-6273(02)01065-6

    Article  PubMed  CAS  Google Scholar 

  4. Fernández-Chacón R, Konigstorfer A, Gerber SH, Garcia J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, Südhof TC (2001) Synaptotagmin-1 functions as a calcium regulator of release probability. Nature 410:41–49. doi:10.1038/35065004

    Article  PubMed  Google Scholar 

  5. Nishiki T, Augustine GJ (2004) Synaptotagmin I synchronizes transmitter release in mouse hippocampal neurons. J Neurosci 24(27):6127–6132. doi:10.1523/JNEUROSCI.1563-04.2004

    Article  PubMed  Google Scholar 

  6. Rappoport JZ, Kemal S, Benmerah A, Simon SM (2006) Dynamics of clathrin and adaptor proteins during endocytosis. Am J Physiol Cell Physiol 291:C1072–C1081. doi:10.1152/ajpcell.00160.2006

    Article  PubMed  CAS  Google Scholar 

  7. Loscher W, Rundfeldt C (1991) Kindling as a model of drug-resistant partial epilepsy: selection of phenytoin-resistant and nonresistant rats. J Pharmacol Exp Ther 258:483–489

    PubMed  CAS  Google Scholar 

  8. Sonna LA, Wenger CB, Flinn S, Sheldon HK, Sawka MN, Lilly CM (2004) Exertional heat injury and gene expression changes: a DNA microarray analysis study. J Appl Physiol 96:1943–1953. doi:10.1152/japplphysiol.00886.2003

    Article  PubMed  CAS  Google Scholar 

  9. Löscher W, Rundfeldt C, Hönack D (1993) Pharmacological characterization of phenytoin-resistant amygdaloid-kindled rats, a new model of drug-resistant partial epilepsy. Epilepsy Res 15:207–219. doi:10.1016/0920-1211(93)90058-F

    Article  PubMed  Google Scholar 

  10. Racine R, Okujava V, Chipashvili S (1972) Modification of seizure activity by electrical stimulation III Mechanism. Electroencephalogr Clin Neurophysiol 32:295–299. doi:10.1016/0013-4694(72)90178-2

    Article  PubMed  CAS  Google Scholar 

  11. Cramer S, Ebert U, Löscher W (1998) Characterization of phenytoin-resistant kindled rats, a new model of drug-resistant partial epilepsy: comparison of inbred strains. Epilepsia 39:1046–1053. doi:10.1111/j.1528-1157.1998.tb01289.x

    Article  PubMed  CAS  Google Scholar 

  12. Guo X, Yang G (2004) Affection of freezing store on the determination of phenytoin and carbamazepinein human plasma. J Henan Univ 23:22–23 Medical Science

    Google Scholar 

  13. Ebert U, Loscher W (1999) Characterization of phenytoin-resistant kindled rats, a new model of drug-resistant partial epilepsy: influence of genetic factors. Epilepsy Res 33:217–226. doi:10.1016/S0920-1211(98)00087-4

    Article  PubMed  CAS  Google Scholar 

  14. Racine RJ, Steingart M, McIntyre DC (1999) Development of kindling-prone and kindling-resistant rats: selective breeding and electrophysiological studies. Epilepsy Res 35:183–195

    Article  PubMed  CAS  Google Scholar 

  15. Nanobashvili ZI, Chachua TR, Bilanishvili IG, Beradze GG, Gotsadze TR, Khizanishvili NA (2005) Possible mechanism of blocking of limbic motor seizure reactions induced by activation of the thalamic reticular nucleus. Neurophysiology 37:308–316. doi:10.1007/s11062-006-0005-2

    Article  Google Scholar 

  16. Poskanzer KE, Marek KW, Sweeney ST, Davis GW (2003) Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426:559–563. doi:10.1038/nature02184

    Article  PubMed  CAS  Google Scholar 

  17. Piehl M, Lehmann C, Gumpert A, Denizot JP, Segretain D, Falk MM (2007) Internalization of large double-membrane intercellular vesicles by a clathrin-dependent endocytic process. Mol Biol Cell 18:337–347. doi:10.1091/mbc.E06-06-0487

    Article  PubMed  CAS  Google Scholar 

  18. Shi G, Faundez V, Roos J, Dell’Angelica EC, Kelly RB (1998) Neuroendocrine synaptic vesicles are formed in vitro by both clathrin-dependent and clathrin-independent pathways. J Cell Biol 143:947–955. doi:10.1083/jcb.143.4.947

    Article  PubMed  CAS  Google Scholar 

  19. Haucke V, Wenk MR, Chapman ER, Farsad K, De Camilli P (2000) Dual interaction of synaptotagmin with the mu2 and alpha subunits of AP-2 facilitates clathrin pit nucleation. EMBO J 19:6011–6019. doi:10.1093/emboj/19.22.6011

    Article  PubMed  CAS  Google Scholar 

  20. Li L, Chin LS, Shupliakov O, Brodin L, Sihra TS, Hvalby O, Jensen V, Zheng D, McNamara JO, Greengard P (1995) Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc Natl Acad Sci USA 92:9235–9239. doi:10.1073/pnas.92.20.9235

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese National Institutes of Health Grants 98013457 to Dr. Xuefeng Wang and Natural Science Fund of Chongqing 08046 to Dr. Kebin Zeng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, K., Wang, X., Wang, Y. et al. Enhanced Synaptic Vesicle Traffic in Hippocampus of Phenytoin-Resistant Kindled Rats. Neurochem Res 34, 899–904 (2009). https://doi.org/10.1007/s11064-008-9856-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9856-9

Keywords

Navigation