Skip to main content
Log in

Sex Steroids Effects on the Content of GAD, TH, GABAA, and Glutamate Receptors in the Olfactory Bulb of the Male Rat

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sex steroids exert multiple functions in the central nervous system. They modulate responses to olfactory information in mammals but their participation in the regulation of neurotransmission in the olfactory bulb is unknown. We studied by Western blot the effects of estradiol (E2), progesterone (P4), and allopregnanolone (Allo) on the content of glutamic acid decarboxylase (GAD), γ-aminobutyric acid A receptor α-2 subunit (GABAAR α-2), glutamate receptor 2/3 (GlutR 2/3), and tyrosine hydroxylase (TH) in the olfactory bulb of gonadectomized male rats. GAD content was increased by all steroids administered alone. Interestingly, progestins reduced E2 effects on GAD content. Steroids increased the content of TH and GABAAR α-2. In contrast, GlutR 2/3 content was decreased by E2 and P4, whereas Allo did not modify it. These results suggest that estrogens and progestins regulate olfactory bulb functions in the male rat by modulating the expression of key proteins involved in several neurotransmission systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bliss EL, Frischat A, Samuels L (1972) Brain and testicular function. Life Sci 11:231–238

    Article  CAS  Google Scholar 

  2. Muroi Y, Ishii T, Komori S et al (2006) A competitive effect of androgen signaling on male mouse attraction to volatile female mouse odors. Physiol Behav 87:199–205

    Article  PubMed  CAS  Google Scholar 

  3. Guo XZ, Su JD, Sun QW et al (2001) Expression of estrogen receptor (ER) -alpha and -beta transcripts in the neonatal and adult rat cerebral cortex, cerebellum, and olfactory bulb. Cell Res 11:321–324

    Article  PubMed  CAS  Google Scholar 

  4. Guerra-Araiza C, Coyoy-Salgado A, Camacho-Arroyo I (2002) Sex differences in the regulation of progesterone receptor isoforms expression in the rat brain. Brain Res Bull 59:105–109

    PubMed  CAS  Google Scholar 

  5. Beltramino C, Taleisnik S (1983) Release of LH in the female by olfactory stimuli. Neuroendocrinology 36:53–58

    Article  PubMed  CAS  Google Scholar 

  6. Romero PR, Beltramino CA, Carrer HF (1990) Participation of the olfactory system in the control of approach behavior of the female rat to the male. Physiol Behav 47:685–690

    Article  PubMed  CAS  Google Scholar 

  7. Grigorjev C, Munaro N (1999) Time-dependent GABA-ergic activity in olfactory bulb and hypothalamus of proestrous rats. Brain Res Bull 48:569–572

    Article  PubMed  CAS  Google Scholar 

  8. Tapia R, Sandoval ME, Contreras P (1975) Evidence for a role of glutamate decarboxylase activity as a regulatory mechanism of cerebral excitability. J Neurochem 24:1283–1285

    Article  PubMed  CAS  Google Scholar 

  9. Ribak CE, Vaughn JE, Saito K et al (1977) Glutamate decarboxylase localization in neurons of the olfactory bulb. Brain Res 126:1–18

    Article  PubMed  CAS  Google Scholar 

  10. Munaro NI (1990) Maternal behavior: glutamic acid decarboxylase activity in the olfactory bulb of the rat. Pharmacol Biochem Behav 36:81–84

    Article  PubMed  CAS  Google Scholar 

  11. Navarro Becerra N, Munaro NI (1992) Gamma-aminobutyric acid activity in the olfactory bulb of the rat during the sexual cycle and response to olfactory stimuli. Can J Physiol Pharmacol 70:922–925

    PubMed  CAS  Google Scholar 

  12. Navarro Becerra N, Grigorjev C, Munaro N (1996) Glutamic acid decarboxylase in rat olfactory bulb: effect of ovarian steroids or male pheromones. Eur J Pharmacol 312:83–87

    Article  PubMed  CAS  Google Scholar 

  13. Halasz N, Johansson O, Hokfelt T et al (1981) Immunohistochemical identification of two types of dopamine neuron in the rat olfactory bulb as seen by serial sectioning. J Neurocytol 10:251–259

    Article  PubMed  CAS  Google Scholar 

  14. Kosaka K, Toida K, Aika Y et al (1998) How simple is the organization of the olfactory glomerulus? The heterogeneity of so-called periglomerular cells. Neurosci Res 30:101–110

    Article  PubMed  CAS  Google Scholar 

  15. Ennis M, Zhou FM, Ciombor KJ et al (2001) Dopamine D2 receptor-mediated presynaptic inhibition of olfactory nerve terminals. J Neurophysiol 86:2986–2997

    PubMed  CAS  Google Scholar 

  16. Brunig I, Sommer M, Hatt H et al (1999) Dopamine receptor subtypes modulate olfactory bulb gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci USA 96:2456–2460

    Article  PubMed  CAS  Google Scholar 

  17. Wilson DA, Sullivan RM (1995) The D2 antagonist spiperone mimics the effects of olfactory deprivation on mitral/tufted cell odor response patterns. J Neurosci 15:5574–5581

    PubMed  CAS  Google Scholar 

  18. Gomez C, Brinon JG, Valero J et al (2007) Sex differences in catechol contents in the olfactory bulb of control and unilaterally deprived rats. Eur J Neurosci 25:1517–1528

    Article  PubMed  CAS  Google Scholar 

  19. Hayashi Y, Momiyama A, Takahashi T (1993) Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature 366:687–690

    Article  PubMed  CAS  Google Scholar 

  20. Sahara Y, Kubota T, Ichikawa M (2001) Cellular localization of metabotropic glutamate receptors mGluR1, 2/3, 5 and 7 in the main and accessory olfactory bulb of the rat. Neurosci Lett 312:59–62

    Article  PubMed  CAS  Google Scholar 

  21. Joh HD, Searles RV, Selmanoff M et al (2006) Estradiol alters only GAD67 mRNA levels in ischemic rat brain with no consequent effects on GABA. J Cereb Blood Flow Metab 26:518–526

    Article  PubMed  CAS  Google Scholar 

  22. Nakamura NH, Rosell DR, Akama KT (2004) Estrogen and ovariectomy regulate mRNA and protein of glutamic acid decarboxylases and cation-chloride cotransporters in the adult rat hippocampus. Neuroendocrinology 80:308–323

    Article  PubMed  CAS  Google Scholar 

  23. Weiland NG (1992) Glutamic acid decarboxylase messenger ribonucleic acid is regulated by estradiol and progesterone in the hippocampus. Endocrinology 131:2697–2702

    Article  PubMed  CAS  Google Scholar 

  24. Serova LI, Maharjan S, Huang A et al (2004) Response of tyrosine hydroxylase and GTP cyclohydrolase I gene expression to estrogen in brain catecholaminergic regions varies with mode of administration. Brain Res 1015:1–8

    Article  PubMed  CAS  Google Scholar 

  25. Kohama SG, Bethea CL (1995) Steroid regulation of tyrosine hydroxylase messenger ribonucleic acid in dopaminergic subpopulations of monkey hypothalamus. Endocrinology 136:1790–1800

    Article  PubMed  CAS  Google Scholar 

  26. Cyr M, Ghribi O, Di Paolo T (2000) Regional and selective effects of oestradiol and progesterone on NMDA and AMPA receptors in the rat brain. J Neuroendocrinol 12:445–452

    Article  PubMed  CAS  Google Scholar 

  27. Weiland NG, Orchinik M (1995) Specific subunit mRNAs of the GABAA receptor are regulated by progesterone in subfields of the hippocampus. Mol Brain Res 32:271–278

    Article  PubMed  CAS  Google Scholar 

  28. Frye CA, Manjarrez J, Camacho-Arroyo I (2000) Infusion of 3α, 5α-THP to the pontine reticular formation attenuates PTZ-induced seizures. Brain Res 881:98–102

    Article  PubMed  CAS  Google Scholar 

  29. Salazar P, Tapia R, Rogawski MA (2003) Effects of neurosteroids on epileptiform activity induced by picrotoxin and 4-aminopyridine in the rat hippocampal slice. Epilepsy Res 55:71–82

    Article  PubMed  CAS  Google Scholar 

  30. Rupprecht R, Hauser CA, Trapp T, Holsboer F (1996) Neurosteroids: molecular mechanisms of action and psychopharmacological significance. J Steroid Biochem Mol Biol 56:163–168

    Article  PubMed  CAS  Google Scholar 

  31. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, California

    Google Scholar 

  32. Frye CA, Bayon LE, Purnani NK, Purdy RH (1998) The neurosteroids, progesterone and 3alpha, 5alpha-THP, enhance sexual motivation, receptivity, and proceptivity in female rats. Brain Res 808:72–83

    Article  PubMed  CAS  Google Scholar 

  33. Herbison AE, Fenelon VS (1995) Estrogen regulation of GABAA receptor subunit mRNA expression in preoptic area and bed nucleus of the stria terminalis of female rat brain. J Neurosci 15:2328–2337

    PubMed  CAS  Google Scholar 

  34. Da Settimo F, Taliani S, Trincavelli ML, Montali M, Martini C (2007) GABA A/Bz receptor subtypes as targets for selective drugs. Curr Med Chem 14:2680–2701

    Article  PubMed  CAS  Google Scholar 

  35. Follesa P, Biggio F, Caria S et al (2004) Modulation of GABA(A) receptor gene expression by allopregnanolone and ethanol. Eur J Pharmacol 500:413–425

    Article  PubMed  CAS  Google Scholar 

  36. Charalampopoulos I, Dermitzaki E, Vardouli L et al (2005) Dehydroepiandrosterone sulfate and allopregnanolone directly stimulate catecholamine production via induction of tyrosine hydroxylase and secretion by affecting actin polymerization. Endocrinology 146:3309–3318

    Article  PubMed  CAS  Google Scholar 

  37. Gu G, Varoqueaux F, Simerly RB (1999) Hormonal regulation of glutamate receptor gene expression in the anteroventral periventricular nucleus of the hypothalamus. J Neurosci 19:3213–3222

    PubMed  CAS  Google Scholar 

  38. Gazzaley AH, Weiland NG, McEwen BS et al (1996) Differential regulation of NMDAR1 mRNA and protein by estradiol in the rat hippocampus. J Neurosci 16:6830–6838

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Maria G. Campos from UIM en Farmacología, CMN SXXI-IMSS, for the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Camacho-Arroyo.

Additional information

Special issue article in honor of Dr. Ricardo Tapia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerra-Araiza, C., Miranda-Martinez, A., Neri-Gómez, T. et al. Sex Steroids Effects on the Content of GAD, TH, GABAA, and Glutamate Receptors in the Olfactory Bulb of the Male Rat. Neurochem Res 33, 1568–1573 (2008). https://doi.org/10.1007/s11064-008-9665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9665-1

Keywords

Navigation