Skip to main content

Advertisement

Log in

Testing for Linkage and Association Across the Dihydrolipoyl Dehydrogenase Gene Region with Alzheimer’s Disease in Three Sample Populations

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Prior case–control studies from our laboratory of a population enriched with individuals of Ashkenazi Jewish descent suggested that association exists between Alzheimer’s disease (AD) and the chromosomal region near the DLD gene, which encodes the mitochondrial dihydrolipoamide dehydrogenase enzyme. In support of this finding, we found that linkage analysis restricted to autopsy-proven patients in the National Institute of Mental Health–National Cell Repository for Alzheimer’s Disease (NIMH–NCRAD) Genetics Initiative pedigree data resulted in point-wise significant evidence for linkage (minimum p-value = 0.024) for a marker position close to the DLD locus. We now report case–control replication studies in two independent Caucasian series from the US and Italy, as well as a linkage analysis from the NIMH–NCRAD Genetics Initiative Database. Pair-wise analysis of the SNPs in the case–control series indicated there was strong linkage disequilibrium across the DLD locus in these populations, as previously reported. These findings suggest that testing for association of complex diseases with DLD locus should have considerable statistical power. Analysis of multi-locus genotypes or haplotypes based upon three SNP loci combined with results from our previous report provided trends toward significant evidence of association of DLD with AD, although neither of the present studies’ association showed significance at the 0.05 level. Combining linkage and association findings for all AD patients (males and females) results in a p-value that is more significant than any of the individual findings’ p-values. Finally, minimum sample size calculations using parameters from the DLD locus suggest that sample sizes on the order of 1,000 total cases and controls are needed to detect association for a wide range of genetic model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gibson GE, Sheu KF, Blass JP, Baker A, Carlson KC, Harding B, Perrino P (1988) Reduced activities of thiamine dependent enzymes in brains and peripheral tissues of Alzheimer’s patients. Arch Neurol 45:836–840

    PubMed  CAS  Google Scholar 

  2. Gibson GE, Sheu KF, Blass JP (1998) Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm 105:855–870

    Article  PubMed  CAS  Google Scholar 

  3. Mastrogiacoma F, Lindsay JG, Bettendorff L, Rice J, Kish SJ (1996) Brain protein and alpha-ketoglutarate dehydrogenase complex activity in Alzheimer’s disease. Ann Neurol 39:592–598

    Article  PubMed  CAS  Google Scholar 

  4. Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13:72–78

    Article  PubMed  CAS  Google Scholar 

  5. Yates CM, Butterworth J, Tennant MC, Gordon A (1990) Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J Neurochem 55:1624–1630

    Article  PubMed  CAS  Google Scholar 

  6. Brown AM, Gordon D, Lee H, Xu Y, Caudy M, Hardy J, Haroutunian V, Blass JP (2004) Association of the dihydrolipoamide dehydrogenase gene with Alzheimer’s disease in an Ashkenazi Jewish population. Am J Med Genet 131B:60–66

    Article  Google Scholar 

  7. Pericak-Vance MA, Grubber J, Bailey LR, Hedges D, West S, Santoro L, Kemmerer B, Hall JL, Saunders AM, Roses AD, Small GW, Scott WK, Conneally PM, Vance JM, Haines JL (2000) Identification of novel genes in late-onset Alzheimer’s disease. Exp Gerontol 35:1343–1352

    Article  PubMed  CAS  Google Scholar 

  8. Liu TC, Kim H, Arizmendi C, Kitano A, Patel MS (1993) Identification of two missense mutations in a dihydrolipoamide dehydrogenase-deficient patient. Proc Natl Acad Sci USA 90:5186–5190

    Article  PubMed  CAS  Google Scholar 

  9. Hong YS, Kerr DS, Craigen WJ, Tan J, Pan Y, Lusk M, Patel MS (1996) Identification of two mutations in a compound heterozygous child with dihydrolipoamide dehydrogenase deficiency. Hum Mol Genet 5:1925–1930

    Article  PubMed  CAS  Google Scholar 

  10. Hong YS, Kerr DS, Liu TC, Lusk M, Powell BR, Patel MS (1997) Deficiency of dihydrolipoamide dehydrogenase due to two mutant alleles (E340K and G101del). Analysis of a family and prenatal testing. Biochim Biophys Acta 1362:160–168

    PubMed  CAS  Google Scholar 

  11. Blacker D, Bertram L, Saunders AJ, Moscarillo TJ, Albert MS, Wiener H, Perry RT, Collins JS, Harrell LE, Go RC, Mahoney A, Beaty T, Fallin MD, Avramopoulos D, Chase GA, Folstein MF, McInnis MG, Bassett SS, Doheny KJ, Pugh EW, Tanzi RE (2003) Results of a high-resolution genome screen of 437 Alzheimer’s disease families. Hum Mol Genet 12:23–32

    Article  PubMed  CAS  Google Scholar 

  12. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363

    PubMed  CAS  Google Scholar 

  13. Kong A, Cox NJ (1997) Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet 61:1179–1188

    Article  PubMed  CAS  Google Scholar 

  14. Gordon D, Haynes C, Finch SJ, Brown AM (2006) Increase in linkage information by stratification of pedigree data into gold-standard and standard diagnoses: application to the NIMH Alzheimer Disease Genetics Initiative Dataset. Hum Hered 61:97–103

    Article  PubMed  Google Scholar 

  15. Morton NE (1956) The detection and estimation of linkage between the genes for elliptocytosis and the Rh blood type. Am J Hum Genet 8:80–96

    PubMed  CAS  Google Scholar 

  16. Blacker D, Albert MS, Bassett SS, Go RC, Harrell LE, Folstein MF (1994) Reliability and validity of NINCDS-ADRDA criteria for Alzheimer’s disease. The National Institute of Mental Health Genetics Initiative. Arch Neurol 51:1198–1204

    PubMed  CAS  Google Scholar 

  17. Blacker D, Haines JL, Rodes L, Terwedow H, Go RC, Harrell LE, Perry RT, Bassett SS, Chase G, Meyers D, Albert MS, Tanzi R (1997) ApoE-4 and age at onset of Alzheimer’s disease: the NIMH genetics initiative. Neurology 48:139–147

    PubMed  CAS  Google Scholar 

  18. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944

    PubMed  CAS  Google Scholar 

  19. Nacmias B, Bagnoli S, Tedde A, Cellini E, Guarnieri BM, Bartoli A, Serio A, Piacentini S, Sorbi S (2006) Cystatin C and apoe polymorphisms in Italian Alzheimer’s disease. Neurosci Lett 392:110–113

    Article  PubMed  CAS  Google Scholar 

  20. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders. American Psychiatric Association, Washington

    Google Scholar 

  21. The Dementia Study Group of the Italian Neurological Society (2000) Guidelines for the diagnosis of dementia and Alzheimer’s disease. The Dementia Study Group of the Italian Neurological Society. Neurol Sci 21:187–194

    Google Scholar 

  22. Hosking L, Lumsden S, Lewis K, Yeo A, McCarthy L, Bansal A, Riley J, Purvis I, Xu CF (2004) Detection of genotyping errors by Hardy–Weinberg equilibrium testing. Eur J Hum Genet 12:395–399

    Article  PubMed  CAS  Google Scholar 

  23. Kang SJ, Gordon D, Finch SJ (2004) What SNP genotyping errors are most costly for genetic association studies?. Genet Epidemiol 26:132–141

    Article  PubMed  Google Scholar 

  24. Leal SM (2005) Detection of genotyping errors and pseudo-SNPs via deviations from Hardy–Weinberg equilibrium. Genet Epidemiol 29:204–214

    Article  PubMed  Google Scholar 

  25. Cox DG, Kraft P (2006) Quantification of the power of Hardy–Weinberg equilibrium testing to detect genotyping error. Hum Hered 61:10–14

    Article  PubMed  Google Scholar 

  26. Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67

    PubMed  CAS  Google Scholar 

  27. Abecasis GR, Cookson WO (2000) GOLD—graphical overview of linkage disequilibrium. Bioinformatics 16:182–183

    Article  PubMed  CAS  Google Scholar 

  28. Smith CAB (1963) Testing for heterogeneity of recombination fraction values in human genetics. Ann Hum Genet 27:175–182

    PubMed  CAS  Google Scholar 

  29. Ott J (1999) Analysis of human genetic linkage. Johns Hopkins, Baltimore

    Google Scholar 

  30. Schaid DJ (1999) Case-parents design for gene-environment interaction. Genet Epidemiol 16:261–273

    Article  PubMed  CAS  Google Scholar 

  31. Single RM, Meyer D, Hollenbach JA, Nelson MP, Noble JA, Erlich HA, Thomson G (2002) Haplotype frequency estimation in patient populations: the effect of departures from Hardy–Weinberg proportions and collapsing over a locus in the HLA region. Genet Epidemiol 22:186–195

    Article  PubMed  Google Scholar 

  32. Agresti A (2002) Categorical data analysis. In: Wiley series in probability and statistics. Wiley, Hoboken, 710 pp

  33. Fisher RA (1960) The design of experiments. Oliver and Boyd, Edinburgh

    Google Scholar 

  34. Freeman GH, Halton JH (1951) Note on an exact treatment of contingency, goodness of fit and other problems of significance. Biometrika 38:141–149

    PubMed  CAS  Google Scholar 

  35. Fisher RA (1970) Statistical methods for research workers. Hafner/MacMillan, New York

    Google Scholar 

  36. Westfall PH, Young SS (1993) Resampling-based multiple testing. Wiley, New York

    Google Scholar 

  37. Hill WG, Weir BS (1994) Maximum-likelihood estimation of gene location by linkage disequilibrium. Am J Hum Genet 54:705–714

    PubMed  CAS  Google Scholar 

  38. Purcell S, Cherny SS, Sham PC (2003) Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19:149–150

    Article  PubMed  CAS  Google Scholar 

  39. Gordon D, Finch SJ, Nothnagel M, Ott J (2002) Power and sample size calculations for case–control genetic association tests when errors are present: application to single nucleotide polymorphisms. Hum Hered 54:22–33

    Article  PubMed  Google Scholar 

  40. Gordon D, Haynes C, Blumenfeld J, Finch SJ (2005) PAWE-3D: visualizing power for association with error in case–control genetic studies of complex traits. Bioinformatics 21:3935–3937

    Article  PubMed  CAS  Google Scholar 

  41. Gordon D, Simonic I, Ott J (2000) Significant evidence for linkage disequilibrium over a 5-cM region among Afrikaners. Genomics 66:87–92

    Article  PubMed  CAS  Google Scholar 

  42. Pandit B, Ahn GS, Hazard SE, Gordon D, Patel SB (2006) A detailed HapMap of the Sitosterolemia locus spanning 69 kb; differences between Caucasians and African-Americans. BMC Med Genet 7:13

    Article  PubMed  Google Scholar 

  43. Schaid DJ, Sommer SS (1993) Genotype relative risks: methods for design and analysis of candidate-gene association studies. Am J Hum Genet 53:1114–1126

    PubMed  CAS  Google Scholar 

  44. Zondervan KT, Cardon LR (2004) The complex interplay among factors that influence allelic association. Nat Rev Genet 5:89–100

    Article  PubMed  CAS  Google Scholar 

  45. Pfeiffer RM, Gail MH (2003) Sample size calculations for population- and family-based case–control association studies on marker genotypes. Genet Epidemiol 25:136–148

    Article  PubMed  Google Scholar 

  46. Tu IP, Whittemore AS (1999) Power of association and linkage tests when the disease alleles are unobserved. Am J Hum Genet 64:641–649

    Article  PubMed  CAS  Google Scholar 

  47. Abel L, Muller-Myhsok B (1998) Maximum-likelihood expression of the transmission/disequilibrium test and power considerations. Am J Hum Genet 63:664–667

    Article  PubMed  CAS  Google Scholar 

  48. De La Vega FM, Gordon D, Su X, Scafe C, Isaac H, Gilbert DA, Spier EG (2005) Power and sample size calculations for genetic case/control studies using gene-centric SNP maps: application to human chromosomes 6, 21, and 22 in three populations. Hum Hered 60:43–60

    Article  PubMed  Google Scholar 

  49. Ji F, Yang Y, Haynes C, Finch SJ, Gordon D (2005) Computing asymptotic power and sample size for case–control genetic association studies in the presence of phenotype and/or genotype misclassification errors. Stat Appl Genet Mol Biol 4:Article 37

  50. Gordon D, Finch SJ (2005) Factors affecting statistical power in the detection of genetic association. J Clin Invest 115:1408–1418

    Article  PubMed  CAS  Google Scholar 

  51. Sasieni PD (1997) From genotypes to genes: doubling the sample size. Biometrics 53:1253–1261

    Article  PubMed  CAS  Google Scholar 

  52. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  PubMed  CAS  Google Scholar 

  53. Consortium IH (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  Google Scholar 

  54. Mayeux R, Saunders AM, Shea S, Mirra S, Evans D, Roses AD, Hyman BT, Crain B, Tang MX, Phelps CH (1998) Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. Alzheimer’s Disease Centers Consortium on Apolipoprotein E and Alzheimer’s Disease. N Engl J Med 338:506–511

    Article  PubMed  CAS  Google Scholar 

  55. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nat Genet 29:229–232

    Article  PubMed  CAS  Google Scholar 

  56. The International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796

    Article  Google Scholar 

  57. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981

    Article  PubMed  CAS  Google Scholar 

  58. Wise LH, Lanchbury JS, Lewis CM (1999) Meta-analysis of genome searches. Ann Hum Genet 63:263–272

    Article  PubMed  CAS  Google Scholar 

  59. Wise LH, Lewis CM (1999) A method for meta-analysis of genome searches: application to simulated data. Genet Epidemiol 17(Suppl 1):S767–S771

    PubMed  Google Scholar 

  60. Pritchard JK (2001) Are rare variants responsible for susceptibility to complex diseases?. Am J Hum Genet 69:124–137

    Article  PubMed  CAS  Google Scholar 

  61. International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  Google Scholar 

  62. Thorisson GA, Smith AV, Krishnan L, Stein LD (2005) The International HapMap Project Web site. Genome Res 15:1592–1593

    Article  PubMed  CAS  Google Scholar 

  63. Pritchard JK, Przeworski M (2001) Linkage disequilibrium in humans: models and data. Am J Hum Genet 69:1–14

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH-AG14930 (JPB) and Winifred Masterson Burke Relief Foundation. Supported by the Italian Ministry of Instruction, University and Research grants 2005051707-005 and 2005062887-004. JH and FW-DV were supported by the NIA intramural program. Data and biomaterials were collected in three projects that participated in the NIMH Alzheimer Disease Genetics Initiative. From 1991 to 1998, the Principal Investigators and Co-Investigators were: Massachusetts General Hospital, Boston, MA, U01 MH46281, Marilyn S. Albert, Ph.D., and Deborah Blacker, M.D., Sc.D.; Johns Hopkins University, Baltimore, MD, U01 MH46290, Susan S. Bassett, Ph.D., Gary A. Chase, Ph.D., and Marshal F. Folstein, M.D.; University of Alabama, Birmingham, AL, U01 MH46373, Rodney C.P. Go, Ph.D., and Lindy E. Harrell, M.D. Electronic database information SNPbrowser software: www.allsnps.com/snpbrowser/ HAPMAP: www.hapmap.org GOLD: http://www.sph.umich.edu/csg/abecasis/GOLD/ PAWE-3D: http://linkage.rockefeller.edu/pawe3d/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Gordon.

Additional information

Special issue dedicated to John P. Blass.

A.M. Brown and D. Gordon contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, A.M., Gordon, D., Lee, H. et al. Testing for Linkage and Association Across the Dihydrolipoyl Dehydrogenase Gene Region with Alzheimer’s Disease in Three Sample Populations. Neurochem Res 32, 857–869 (2007). https://doi.org/10.1007/s11064-006-9235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9235-3

Keywords

Navigation