Skip to main content
Log in

Fractional-Order Embedding Supervised Canonical Correlations Analysis with Applications to Feature Extraction and Recognition

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Due to the noise disturbance and limited number of training samples, within-set and between-set sample covariance matrices in canonical correlations analysis (CCA) based methods usually deviate from the true ones. In this paper, we re-estimate the covariance matrices by embedding fractional order and incorporate the class label information. First, we illustrate the effectiveness of the fractional-order embedding model through theory analysis and experiments. Then, we quote fractional-order within-set and between-set scatter matrices, which can significantly reduce the deviation of sample covariance matrices. Finally, we incorporate the supervised information, novel generalized CCA and discriminative CCA are presented for multi-view dimensionality reduction and recognition, called fractional-order embedding generalized canonical correlations analysis and fractional-order embedding discriminative canonical correlations analysis. Extensive experimental results on various handwritten numeral, face and object recognition problems show that the proposed methods are very effective and obviously outperform the existing methods in terms of classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jolliffe IT (1986) Principle components analysis. Springer, New York

    Book  MATH  Google Scholar 

  2. Truk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  3. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:178–188

    Google Scholar 

  4. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  5. Tenenbaum JB, Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–1323

    Article  Google Scholar 

  6. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  7. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  MATH  Google Scholar 

  8. Zhang Z, Zha H (2004) Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J Sci Comput 26(1):313–338

    Article  MathSciNet  MATH  Google Scholar 

  9. Hou C, Wang J, Yi W, Yi D (2009) Locally linear transformation embedding. Neurocomputing 72(10–12):2368–2378

    Article  Google Scholar 

  10. Sargin M, Yemez Y, Erzin E, Tekalp A (2007) Audio-visual synchronization and fusion using canonical correlation analysis. IEEE Trans Multimedia 9(7):1396–1403

    Article  Google Scholar 

  11. Slaney M, Covell M (2000) FaceSync: a linear operator for measuring synchronization of video facial images and audio tracks. In: Leen TK, Dietterich TG, Tresp V (eds) Advances in neural information processing systems (NIPS), vol 13. MIT Press, Cambridge, pp 814–820

    Google Scholar 

  12. Chibelushi CC, Deravi F, Mason JSD (2002) A review of speech-based bimodal recognition. IEEE Trans Multimedia 4(1):23–37

    Article  Google Scholar 

  13. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  14. Hou C, Zhang C, Wu Y, Nie F (2010) Multiple view semi-supervised dimensionality reduction. Pattern Recognit 43(3):720–730

    Article  MATH  Google Scholar 

  15. Hotelling H (1936) Relations between two sets of variates. Biometrika 28(3/4):321–377

    Article  MATH  Google Scholar 

  16. Sun QS, Zeng SG, Liu Y, Heng PA, Xia DS (2005) A new method of feature fusion and its application in image recognition. Pattern Recognit 38(12):2437–2448

    Article  Google Scholar 

  17. Sun QS, Zeng SG, Wang PA, Xia DS (2005) The theory of canonical correlation analysis with its applications to feature fusion. Chin J Comput 28(9):1524–1533

    MathSciNet  Google Scholar 

  18. Hardoon DR, Szedmak SR, Shawe-Taylor JR (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16(12):2639–2664

    Article  MATH  Google Scholar 

  19. Sun Q-S, Liu Z-D, Heng P-A, Xia D-S (2005) A theorem on the generalized canonical projective vectors. Pattern Recognit 38(3):449–452

    Article  MATH  Google Scholar 

  20. Sun TK, Chen SC, Yang JY, Shi PF (2008) A novel method of combined feature extraction for recognition. In: IEEE international conference on data mining, Pisa, Italy, pp 1043–1048

  21. Yuan Y-H, Sun Q-S, Ge H-W (2014) Fractional-order embedding canonical correlation analysis and its applications to multi-view dimensionality reduction and recognition. Pattern Recognit 47:1411–1424

    Article  MATH  Google Scholar 

  22. Yuan Y-H, Sun Q-S (2013) Fractional-order embedding multiset canonical correlations with applications to multi-feature fusion and recognition. Neurocomputing 122:229–238

    Article  Google Scholar 

  23. Golub GH, Van Loan CF (1996) Matrix computations, vol 47(5 Series II). The Johns Hopkins University Press, Baltimore, pp 392–396

  24. Liu J, Chen S-C, Tan X-Y (2008) Fractional order singular value decomposition representation for face recognition. Pattern Recognit 41:378–395

    Article  MATH  Google Scholar 

  25. Martinez AM, Benavente R (1998) The AR face database. CVC Technical Report #24, June 1998

  26. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  27. Lee K, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

  28. Fu Y, Yan S, Huang TS (2008) Correlation metric for generalized feature extraction. IEEE Trans Pattern Anal Mach Intell 30(12):2229–2235

    Article  Google Scholar 

  29. Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  30. He X, Ji M, Zhang C, Bao H (2011) A variance minimization criterion to feature selection using Laplacian regularization. IEEE Trans Pattern Anal Mach Intell 33(10):2013–2025

    Article  Google Scholar 

  31. Nene SA, Nayar SK, Murase H (1996) Columbia object image library (COIL-20). Technical Report CUCS-005-96

  32. Warfield S (1996) Fast k-NN classification for multichannel image data. Pattern Recognit Lett 17(7):713–721

    Article  Google Scholar 

  33. Barlaud M, Mathieu P, Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005

    Article  MathSciNet  MATH  Google Scholar 

  34. Dai D-Q, Yuen PC (2007) Face recognition by regularized discriminant analysis. IEEE Trans Syst Man Cybern Part B Cybern 37(4):1080–1085

    Article  Google Scholar 

  35. Ji S, Ye J (2008) Kernel uncorrelated and regularized discriminant analysis: a theoretical and computational study. IEEE Trans Knowl Data Eng 20(10):1311–1321

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by Graduate Research and Innovation Foundation of Jiangsu Province, China, under Grant KYLX15_0379, and in part by the National Natural Science Foundation of China under Grants 61273251, 61401209, and 61402203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Sen Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, HK., Sun, QS., Yuan, YH. et al. Fractional-Order Embedding Supervised Canonical Correlations Analysis with Applications to Feature Extraction and Recognition. Neural Process Lett 45, 279–297 (2017). https://doi.org/10.1007/s11063-016-9524-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-016-9524-z

Keywords

Navigation