Skip to main content
Log in

Enhancing Least Square Support Vector Regression with Gradient Information

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Traditional methods of constructing of least square support vector regression (LSSVR) do not consider the gradients of the true function but just think about the exact responses at samples. If gradient information is easy to get, it should be used to enhance the surrogate. In this paper, the gradient-enhanced least square support vector regression (GELSSVR) is developed with a direct formulation by incorporating gradient information into the traditional LSSVR. The efficiencies of this technique are compared by analytical function fitting and two real life problems (the recent U.S. actuarial life table and Borehole). The results show that GELSSVR provides more reliable prediction results than LSSVR alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alexander IJ, Forrester AJK (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45:50–79

    Article  Google Scholar 

  2. Ankenman BE, Nelson BL, Staum J (2010) Stochastic kriging for simulation metamodeling. Oper Res 58(2):371–382

    Article  MathSciNet  MATH  Google Scholar 

  3. Bendtsen C, Stauning O (1996) Fadbad, a flexible c++ package for automatic differentiation. Tech. rep., Technical University of Denmark, IMM, Departement of Mathematical Modeling

  4. Bischof C, Khademi P, Mauer A, Carle A (1996) Adifor 2.0: Automatic differentiation of fortran 77 programs. Comput Sci Eng, IEEE 3(3):18–32

    Article  Google Scholar 

  5. Bischof CH, Roh L, Mauer-Oats AJ (1997) Adic: an extensible automatic differentiation tool for ansi-c. Softw Pract Exp 27(12):1427–1456

    Article  Google Scholar 

  6. Bischof CH, Bucker H, Lang B, Rasch A, Vehreschild A (2002) Combining source transformation and operator overloading techniques to compute derivatives for matlab programs. In: Source Code Analysis and Manipulation, 2002. Proceedings. Second IEEE International Workshop on, IEEE, pp 65–72

  7. Chen X, Ankenman BE, Nelson BL (2013) Enhancing stochastic kriging metamodels with gradient estimators. Oper Res 61(2):512–528

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung HS, Alonso JJ (2001) Using gradients to construct response surface models for high-dimensional design optimization problems. In: 39th AIAA Aerospace Sciences Meeting and Exhibit, AIAA, Reno, NV, USA

  9. Chung HS, Alonso JJ (2002a) Design of a low-boom supersonic business jet using cokriging approximation models. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA, Atlanta, GA, USA

  10. Chung HS, Alonso JJ (2002b) Using gradients to construct cokriging approximation models for high-dimensional design optimization problems. In: 40th AIAA Aerospace Sciences Meeting and Exhibit, AIAA, Reno, NV, USA

  11. Coleman TF, Verma A (2000) Admit-1: automatic differentiation and matlab interface toolbox. ACM Trans Math Softw 26(1):150–175

    Article  MathSciNet  MATH  Google Scholar 

  12. Giering R, Kaminski T (1998) Recipes for adjoint code construction. ACM Trans Math Softw 24(4):437–474

    Article  MATH  Google Scholar 

  13. Giles MB, Pierce NA (2000) An introduction to the adjoint approach to design. Flow, Turbul Combust 65(3–4):393–415

    Article  MATH  Google Scholar 

  14. Golub GH, Van Loan CF (1989) Matrix computations. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  15. Griewank A (2000) Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, Philadelphia, PA, USA

  16. Griewank A, Juedes D, Utke J (1996) Adol-c, a package for the automatic differentiation of algorithms written in c/c++. ACM Trans Math Softw 22(2):131–167

    Article  MATH  Google Scholar 

  17. Han ZH, Gortz S, Zimmermann R (2009) On improving efficiency and accuracy of variable-fidelity surrogate modeling in aero-data for loads context. In: Proceedings of European Air and Space Conference, CEAS, Manchester, UK

  18. Hascot L (2004) Tapenade: a tool for automatic differentiation of programs. In: Proceedings of 4th European congress on computational methods, ECCOMAS, Jyvaskyla, Finland, pp 1–14

  19. Jones BL, Mereu JA (2002) A critique of fractional age assumptions. Insur Math Econ 30:363–370

    Article  MathSciNet  MATH  Google Scholar 

  20. Laurenceau J, Sagaut P (2008) Building efficient response surfaces of aerodynamic functions with kriging and cokriging. AIAA J 46(2):498–507

    Article  Google Scholar 

  21. Leary SJ, Bhaskar A, Keane AJ (2004) A derivative based surrogate model for approximating and optimizing the output of an expensive computer simulation. J Global Optim 30(1):39–58

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu W, Batill S (2000) Gradient-enhanced neural network response surface approximations. In: 8th AIAA/ISSMO Symposium and Exhibit on Multidisciplinary Analysis and Optimization, AIAA, Long Beach, California, USA

  23. Liu W, Batill SM (2002) Gradient-enhanced response surface approximations using kriging models. In: 9th AIAA/ISSMO Symposium and Exhibit on Multidisciplinary Analysis and Optimization, AIAA, Atlanta, Georgia, USA

  24. Luo Y, Tao D, Geng B, Xu C, Maybank SJ (2013a) Manifold regularized multitask learning for semi-supervised multilabel image classification. Image Proc IEEE Trans 22(2):523–536

    Article  MathSciNet  Google Scholar 

  25. Luo Y, Tao D, Xu C, Xu C, Liu H, Wen Y (2013b) Multiview vector-valued manifold regularization for multilabel image classification. IEEE Trans Neural Networks Learn Syst 24(5):709–722

    Article  Google Scholar 

  26. McKay MD, Bechman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245

    MathSciNet  MATH  Google Scholar 

  27. Mitra NJ, Nguye A (2003) Estimating surface normals in noisy point cloud data. Int J Comput Geom Appl 14:261–276

    Article  Google Scholar 

  28. Morris MD, Mitchell TJ, Ylvisaker D (1993) Bayesian design and analysis of computer experiments: use of derivatives in surface prediction. Technometrics 35(3):243–255

    Article  MathSciNet  MATH  Google Scholar 

  29. NLBowers, Gether HU, Hiekman JC, Jones DA, Nesbi CJ (1986) Actuarial mathematics. Society of Actuaries Schaumburg

  30. Saunders C, Gammerman A, Vovk V (1998) Ridge regression learning algorithm in dual variables. In: (ICML-1998) Proceedings of the 15th International Conference on Machine Learning, Morgan Kaufmann, Madison, Wisconsin, USA, pp 515–521

  31. Shiriaev D, Griewank A (1996) Adol-f automatic differentiation of fortran codes. In: Computational differentiation: techniques, applications, and tools, SIAM, Philadelphia, PA, USA, pp 375–384

  32. Smola AJ, Schlkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222

    Article  MathSciNet  Google Scholar 

  33. Sobester A (2003) Enhancements to global design optimization techniques. PhD thesis

  34. Stephenson G (2010) Using derivative information in the statistical analysis of computer models. PhD thesis

  35. Van KF, Vervenne K (2004) Gradient-enhanced response surface building. Struct Multi Optim 27:337–351

    Google Scholar 

  36. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  37. Wang GG, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Des 129(4):370–381

    Article  MathSciNet  Google Scholar 

  38. Yamazaki W, Rumpfkeil MP, Mavriplis DJ (2010) Design optimization utilizing gradient/hessian enhanced surrogate model. In: 28th AIAA Applied Aerodynamics Conference, AIAA, Chicago, Illinois, USA

  39. Zhou XJ, Ma YZ (2013) A study on smo algorithm for solving -svr with non-psd kernels. Commun Stat Simul Comput 40(10):2175–2196

    Article  MathSciNet  Google Scholar 

  40. Zhou XJ, Ma YZ, Li XF (2011) Ensemble of surrogates with recursive arithmetic average. Struct Multi Optim 44(5):651–671

    Article  Google Scholar 

  41. Zhou XJ, Ma YZ, Tu YL, Feng Y (2012) Ensemble of surrogates for dual response surface modeling in robust parameter design. Qual Reliab Eng Int 29(2):173–197

    Article  Google Scholar 

Download references

Acknowledgments

The funding provided for this study by National Science Foundation for Young Scientists of China under Grant NO.71401080, the University Social Science Foundation of Jiangsu under Grant NO.2013SJB6300072 & NO.TJS211021, the University Science Foundation of Jiangsu under Grant NO.12KJB630002, and the Talent Introduction Foundation of Nanjing University of Posts and Telecommunications under Grant NO.NYS212008 & NO.D/2013/01/104 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X.J., Jiang, T. Enhancing Least Square Support Vector Regression with Gradient Information. Neural Process Lett 43, 65–83 (2016). https://doi.org/10.1007/s11063-014-9402-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-014-9402-5

Keywords

Navigation