Skip to main content
Log in

Homogenous Spiking Neural P Systems with Inhibitory Synapses

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Spiking neural P systems with inhibitory synapses (ISN P systems, for short) are a class of discrete neural-like computing models, which are inspired by the way of biological neurons storing and processing information and communication by means of excited and inhibitory impulses. In this work, we prove that ISN P systems can compute and accept any set of Turing computable numbers by using one type of neurons, thus can achieve Turing universality. Such systems are called homogenous ISN P systems. The results give a positive answer to an open problem left in (Pan and Păun, Int J Comput Commun 4(3):273–282, 2009) that “whether the number of types of neurons in universal SN P systems can be decreased by using inhibitory synapses”. The obtained result is optimal in the sense of having minimal number of types of neurons in Turing universal SN P systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rozenberg G, Bck T, Kok JN (2011) Handbook of natural computing. Springer, Berlin

    Google Scholar 

  2. Păun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143

    Article  MathSciNet  MATH  Google Scholar 

  3. Freund R, Păun G, Pérez-Jiménez MJ (2005) Tissue-like P systems with channel-states. Theor Comput Sci 330:101–116

    Article  Google Scholar 

  4. Ionescu M, Păun G, Yokomori T (2006) Spiking neural P systems. Fund Inf 71(2–3):279–308

    MATH  Google Scholar 

  5. Nishida TY (2004) An approximate algorithm for NP-complete optimization problems exploiting P systems. In Proceedings of Brainstorming Workshop on Uncertainty in Membrane, Computing, 185–192

  6. Zhang G, Cheng J, Gheorghe M, Meng Q (2013) A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems. Appl Soft Comput 13(3):1528–1542

    Article  Google Scholar 

  7. Păun G, Rozenberg G, Salomaa A (2010) The Oxford handbook of membrane computing. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  8. Siegelmann HT, Sontag ED (1995) On the computational power of neural nets. J Comput System Sci 50(1):132–150

    Article  MathSciNet  MATH  Google Scholar 

  9. Pan L, Zeng X (2010) A note on small universal spiking neural P systems. LNCS 5957:436–447

    Google Scholar 

  10. Pollack JB (1991) The induction of dynamical recognizers. Mach Learn 7(2–3):227–252

    Google Scholar 

  11. Giles CL, Omlin CW (1992), Inserting rules into recurrent neural networks. Neural Networks for Signal Processing II. In Proceedings of the Signal Processing, Workshop, 13–22

  12. Hyoetyniemi H (1996) Turing machines are recurrent neural networks. In Proceedings of Genes, Nets And Symbols. Helsinki, Finland: Finnish Artificial Intelligence Society, 13–24

  13. Moore C (1998) Dynamical recognizers: real-time language recognition by analog computers. Theor Comput Sci 201:99–136

    Article  MATH  Google Scholar 

  14. Maass W (1997) Networks of spiking neurons: the third generation of neural network models. Neural Netw 10:1659–1671

    Article  Google Scholar 

  15. Maass W, Schmitt M (1999) On the complexity of learning for spiking neurons with temporal coding. Inf Comput 153(1):26–46

    Article  MathSciNet  MATH  Google Scholar 

  16. Natschläger T, Maass W (2002) Spiking neurons and the induction of finite state machines. Theor Comput Sci 287(1):251–265

    Article  MATH  Google Scholar 

  17. Ghosh DS, Adeli H (2009) Spiking neural networks. Int J Neural Syst 19(4):295–308

    Article  Google Scholar 

  18. Pan L, Păun G (2010) Spiking neural P systems: an improved normal form. Theor Comput Sci 411(6):906–918

    Article  MATH  Google Scholar 

  19. Zeng X, Pan L (2009) Homogeneous spiking neural P systems. Fund Inf 97:275–294

    MathSciNet  MATH  Google Scholar 

  20. Chen H, Freund R, Ionescu M et al (2007) On string languages generated by spiking neural P systems. Fund Inf 75(1–4):141–162

    MathSciNet  MATH  Google Scholar 

  21. Zhang X, Zeng X, Pan L (2008) On string languages generated by SN P systems with exhaustive use of rules. Nat Comput 7(4):535–549

    Article  MathSciNet  MATH  Google Scholar 

  22. Pan L, Zeng X (2011) Small universal spiking neural P systems working in exhaustive mode. IEEE Trans Nanobiosci 10(2):99–105

    Article  MathSciNet  Google Scholar 

  23. Păun A, Păun G (2007) Small universal spiking neural P systems. Biosystems 90:48–60

    Article  Google Scholar 

  24. Ishdorj TO, Leporati A, Pan L et al (2010) Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theor Comput Sci 411(25):2345–2358

    Article  MathSciNet  Google Scholar 

  25. Pan L, Păun G, Pérez-Jiménez MJ (2011) Spiking neural P systems with neuron division and budding. Sci China Inform Sci 54(8):1596–1607

    Article  MATH  Google Scholar 

  26. Ionescu M, Sburlan D (2007) Some applications of spiking neural P systems. In Proceedings of the Eighth Workshop on Membrane Computing, Thessaloniki, 383–394

  27. Cavaliere M, Ibarra OH, Păun G (2009) Asynchronous spiking neural P systems. Theor Comput Sci 410:2352–2364

    Article  MATH  Google Scholar 

  28. Song T, Pan L, Păun G (2013) Asynchronous spiking neural P systems with local synchronization. Inf Sci 219:197–207

    Article  MATH  Google Scholar 

  29. Pan L, Wang J, Hoogeboom HJ (2012) Spiking neural P systems with astrocytes. Neural Comput 24:1–24

    Article  MathSciNet  Google Scholar 

  30. Macías-Ramos LF, Pérez-Jiménez MJ (2013) Spiking neural P systems with functional astrocytes. LNCS 7762:228–242

    Google Scholar 

  31. Păun G (2007) Spiking neural P systems with astrocyte-like control. J Univers Comput Sci 13(11):1707–1721

    Google Scholar 

  32. Song T, Pan L (2014) Spiking neural P systems with rules on synapses. Theor Comput Sci 529:82–95

    Article  MathSciNet  MATH  Google Scholar 

  33. Pan L, Păun G (2009) Spiking neural P systems with anti-spikes. Int J Comput Commun 4(3):273–282

    Google Scholar 

  34. Song T, Pan L, Wang J et al (2012) Normal forms of spiking neural P systems with anti-spikes. IEEE Trans Nanobiosci 4(11):352–359

    Article  Google Scholar 

  35. Rozenberg G, Salomaa A (1997) Handbook of formal languages. Springer, Berlin

    Book  MATH  Google Scholar 

  36. Minsky M (1967) Computation: finite and infinite machines. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  37. Păun G (2002) Membrane computing: an introduction. Springer, Berlin

    Book  Google Scholar 

  38. Cavaliere M, Egecioglu O, Ibarra OH et al (2009) Asynchronous spiking neural P systems. Theor Comput Sci 410:2352–2364

    Article  MathSciNet  MATH  Google Scholar 

  39. Song T, Wang X, Zhang Z et al (2013) Homogenous spiking neural P systems with anti-spikes. Neural Comput Appl. doi:10.1007/s00521-013-1397-8

  40. Nishida TY (2006) Membrane algorithms: approximate algorithms for np-complete optimization problems. Applications of membrane computing. Springer, Berlin

    Google Scholar 

  41. Zhang G, Gheorghe M, Li Y (2012) A membrane algorithm with quantum-inspired subalgorithms and its application to image processing. Nat Comput 11(4):701–717

    Article  MathSciNet  Google Scholar 

  42. Zhao J, Wang N (2011) Hybrid optimization method based on membrane computing. Ind Eng Chem Res 50(3):1691–1704

    Article  Google Scholar 

  43. Wang K, Wang N (2011) A protein inspired RNA genetic algorithm for parameter estimation in hydrocracking of heavy oil. Chem Eng J 167(1):228–239

    Article  Google Scholar 

  44. Xiao J, Zhang X, Xu J (2012) A membrane evolutionary algorithm for DNA sequence design in DNA computing. Chin Sci Bull 57(1):698–706

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (61033003, 91130034, 61100145, 61202011 and 61272071), Ph.D. Programs Foundation of Ministry of Education of China (20100142110072 and 2012014213 008), and Natural Science Foundation of Hubei Province (2011CDA027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, T., Wang, X. Homogenous Spiking Neural P Systems with Inhibitory Synapses. Neural Process Lett 42, 199–214 (2015). https://doi.org/10.1007/s11063-014-9352-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-014-9352-y

Keywords

Navigation