1.

Comon P (1994) Independent component analysis: a new concept. Signal Process 36: 287–314

CrossRefMATH2.

Kohonen T (1995) Self-organizing maps. Springer, New York

CrossRef3.

Kohonen T (1990) The self-organization map. Proc IEEE 78(9): 1464–1480

CrossRef4.

Kohonen T (1982) Self-organized formation of topological correct feature maps. Biol Cybernet 43: 59–69

MathSciNetCrossRefMATH5.

Sammon JW (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comput C-18(5): 401–409

CrossRef6.

Ultsch A, Siemon HP (1990) Kohonen self-organization feature maps for exploratory data analysis. In: Proceedings of international neural network conference. Kulwer Academic, Dordrecht, pp 305–308

7.

Ultsch A (2003) U*-matrix: a tool to visualize clusters in high dimensional data. Tech. Rep. 36, Department of Computer Science, University of Marburg, Marburg

8.

Vesanto J (1999) SOM-based data visualization methods. Intell Data Anal 3: 111–126

CrossRefMATH9.

Kaski S, Nikkila J, Kohonen T (1998) Methods for interpreting a self-organized map in data analysis. In: Proceedings of European symposium on artificial neural networks, Bruges

10.

Mao I, Jain AK (1995) Artificial neural networks for feature extraction and multivariate data projection. IEEE Trans Neural Netw 6(2): 296–317

CrossRef11.

De Runz C, Desjardin E, Herbin M (2012) Unsupervised visual data mining using self-organizing maps and a data-driven color mapping. In: 16th International conference information visualisation. IEEE Computer Society, Washington, DC, pp 241–245

12.

Shieh S, Liao I (2012) A new approach for data clustering and visualization using self-organizing maps. Expert Syst Appl 39(5): 11924–11933

CrossRef13.

Yin H (2002) ViSOM: a novel method for multivariate data projection and structure visualization. IEEE Trans Neural Netw 13(1): 237–243

CrossRef14.

Su M-C, Chang H-T (2001) A new model of self-organizing neural networks and its application in data projection. IEEE Trans Neural Netw 123(1): 153–158

15.

Wu S, Chow T (2005) Prsom: a new visualization method by hybridizing multidimensional scaling and self-organizing map. IEEE Trans Neural Netw 16(6): 1362–1380

CrossRef16.

Xu L, Xu Y, Chow TW (2010) PolSOM: a new method for multidimentional data visualizatio. Pattern Recogn 43: 1668–1675

CrossRefMATH17.

Xu Y, Xu L, Chow T (2011) PPoSOM: a new variant of PoLSOM by using probabilistic assignment for multidimensional data visualization. Neurocomputing 74(11): 2018–2027

CrossRef18.

Xu L, Chow T (2011) Multivariate data classification using PoLSOM. In: Prognostics and system health management conference (PHM-Shenzhen), IEEE Conference Publications, Shenzhen, pp 1–4

19.

Bogdan M, Rosenstiel W (2001) Detection of cluster in self-organizing maps for controlling a prostheses using nerve signals. In: Proceedings of 9th European symposium on artificial neural networks (ESANN’ 2001), D-facto, Evere, pp 131–136

20.

Brugger D, Bogdan M, Rosenstiel W (2008) Automatic cluster detection in Kohonen’s som. IEEE Trans Neural Netw 19(3): 442–459

CrossRef21.

Haraguchi T, Matsushita H, Nishio Y (2009) Community self-organizing map and its application to data extraction. In: International joint conference on neural networks (IJCNN 2009), IEEE, San Jose, pp 1107–1114

22.

Li Z, Wang R, Chen L (2009) Extracting community structure of complex networks by self-organizing maps. In: Proceedings of the third international symposium on optimization and systems biology (OSB09), pp 48–56

23.

Kamimura R (2010) Information-theoretic enhancement learning and its application to visualization of self-organizing maps. Neurocomputing 73(13–15): 2642–2664

CrossRef24.

Kamimura R (2011) Selective information enhancement learning for creating interpretable representations in competitive learning. Neural Netw 24(4): 387–405

CrossRef25.

Kiviluoto K (1996) Topology preservation in self-organizing maps. In: Proceedings of the IEEE international conference on neural networks (ICANN’96), pp 294–299

26.

Villmann T, Herrmann RDM, Martinez T (1997) Topology preservation in self-organizing feature maps: exact definition and measurment. IEEE Trans Neural Netw 8(2): 256–266

CrossRef27.

Bauer H-U, Pawelzik K (1992) Quantifying the neighborhood preservation of self-organizing maps. IEEE Trans Neural Netw 3(4): 570–578

CrossRef28.

Kaski S, Nikkila J, Oja M, Venna J, Toronen P, Castren E (2003) Trustworthiness and metrics in visualizing similarity of gene expression. BMC Bioinformatics 4: 48

CrossRef29.

Venna J, Kaski S (2001) Neighborhood preservation in nonlinear projection methods: an experimental study. In: Lecture notes in computer science, vol 2130, Springer, Heidelberg, pp 485–491

30.

Polzlbauer G (2004) Survey and comparison of quality measures for self-organizing maps. In: Proceedings of the fifth workshop on data analysis (WDA04), Elfa Academic Press, Slovakia, pp 67–82

31.

Lee JA, Verleysen M (2008) Quality assessment of nonlinear dimensionality reduction based on K-ary neighborhoods. In: JMLR: Workshop and conference proceedings, vol 4, pp 21–35

32.

Kamimura R, Kamimura T, Shultz TR (2001) Information theoretic competitive learning and linguistic rule acquisition. Trans Jpn Soc Artif Intell 16(2): 287–298

CrossRef33.

Kamimura R (2003) Information-theoretic competitive learning with inverse Euclidean distance output units. Neural Process Lett 18: 163–184

CrossRef34.

Rose K, Gurewitz E, Fox GC (1990) Statistical mechanics and phase transition in clustering. Phys Rev Lett 65(8): 945–948

CrossRef35.

Rose K, Gurewitz E, Fox GC (1992) Vector quantization by deterministic annealing. IEEE Trans Inf Theory 38(4): 1249–1257

CrossRefMATH36.

Ueda N, Nakano R (1995) Deterministic annealing variant of the EM algorithm. In: Advances in neural information processing systems, pp 545–552

37.

Ueda N, Nakano R (1998) Deterministic annealing EM algorithm. Neural Netw 11: 271–282

CrossRef38.

Graepel T, Burger M (1997) Obermayer K Phase transitions in stochastic self-organizing maps. Phys Rev E 56(4): 3876

CrossRef39.

Heskes T (2001) Self-organizing maps, vector quantization, and mixture modeling. IEEE Trans Neural Netw 12(6): 1299–1305

CrossRef40.

Kamimura R (2008) Free energy-based competitive learning for mutual information maximization. In: Proceedings of IEEE conference on systems, man, and cybernetics, pp 223–227

41.

Kamimura R (2008) Free energy-based competitive learning for self-organizing maps. In: Proceedings of artificial intelligence and applications, pp 414–419

42.

Kamimura R (2011) Constrained information maximization by free energy minimization. Int J Gen Syst 40(7): 701–725

MathSciNetCrossRefMATH43.

Kamimura R (2011) Self-enhancement learning: target-creating learning and its application to self-organizing maps. Biol Cybernet 104(4–5): 305–338

MathSciNetCrossRefMATH44.

Vesanto J, Himberg J, Alhoniemi E, Parhankangas J (2000) SOM Toolbox for Matlab 5. Tech. Rep. A57, Laboratory of Computer and Information Science, Helsinki University of Technology, Helsinki

45.

Venna J (2007) Dimensionality reduction for visual exploration of similarity structures. Dissertation, Helsinki University of Technology

46.

Frank A, Asuncion A (2010) UCI machine learning repository. School of Information and Computer Sciences, University of California, Irvine.

http://archive.ics.uci.edu/ml
47.

Nakai K, Kanehisa M (1991) Expert system for predicting protein localization sites in gram-negative bacteria. Proteins: Struct, Funct, Bioinform 11(2): 95–110

CrossRef48.

Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14(4): 897–911

CrossRef49.

Horton P, Nakai K (1996) A probabilistic classification system for predicting the cellular localization sites of proteins. In: Proceedings of the fourth international conference on intelligent systems for molecular biology, AAAI Press, St. Louis, pp 109–115

50.

Merenyi E, Jain A, Villmann T (2007) Explicit magnification control of self-organizing maps for forbidden data. IEEE Trans Neural Netw 18(3): 786–797

CrossRef51.

Merenyi E, Jain A (2004) Forbidden magnification? II. In: Proceedings of 12th European symposium on artificial neural networks (ESANN’2004), Bruges, pp 57–62

52.

Kamimura R (2012) Comprehensibility maximization and humanly comprehensible representations. Int J Gen Syst 41(3): 265–287

MathSciNetCrossRefMATH53.

Van Hulle MM (1999) Faithful representations with topographic maps. Neural Networks 12(6): 803–823

CrossRef54.

Van Hulle MM (2004) Entropy-based kernel modeling for topographic map formation. IEEE Trans Neural Netw 15(4): 850–858

CrossRef