Skip to main content
Log in

Electrophysiological Properties of Cultured Neurons of the Rat Trigeminal Ganglion

  • Published:
Neurophysiology Aims and scope

Using a patch-clamp technique in the whole-cell configuration, we examined electrophysiological properties of neurons of the trigeminal ganglion of rats; experiments were carried out under conditions of primary culture. The diameter of the somata of cultured neurons varied from 12 to 50 μm. According to types of electrical activity, all neurons were divided into three groups. After application of a longlasting depolarizing current pulse, neurons with diameter of the soma 30 μm or more generated single action potentials (AP). Tonic activity (AP trains of different patterns) was typical of smaller neurons. The AP parameters of neurons belonging to different groups were significantly dissimilar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Diouhri, L. Bleazard, and S. N. Lawson, “Association of somatic action potential shape with sensory receptive properties in guinea pig dorsal root ganglion neurons,” J. Physiol., 513, No. 3, 857–872 (1998).

    Article  Google Scholar 

  2. X. Fang, S. McMullan, S. N. Lawson, and L. Diouhri, “Electrophysiological differences between nociceptive and non-nociceptive dorsal root ganglion neurones in the rat in vivo,” J. Physiol., 565, No. 3, 927–943 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. L. Diouhri and S. N. Lawson, “Differences in the size of the somatic action potential overshoot between nociceptive and non-nociceptive dorsal root ganglion neurons in the guinea pig,” Neuroscience, 108, No. 3, 479–491 (2001)

    Article  Google Scholar 

  4. S. N. Lawson, “Phenotype and function of somatic primary afferent nociceptive neurons with C, A delta or A alpha/beta fibers,” Exp. Physiol., 87, No. 2, 239–244 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. N. E. Lazarov, “Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus,” Prog. Neurobiol., 66, No. 1, 19–59 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. E. Puil and I. Spigelman, “Electrophysiological responses of trigeminal root ganglion neurons in vitro,” Neuroscience, 24, No. 2, 635–646 (1988).

    Article  PubMed  CAS  Google Scholar 

  7. L. Catacuzzeno, B. Fioretti, D. Pietrobonand, and F. Franciolini, “The differential expression of lowthreshold K+ currents generates distinct firing patterns in different subtypes of adult mouse trigeminal ganglion neurons,” J. Physiol., 586, No. 21, 5101–5118 (2008).

    Article  PubMed  CAS  Google Scholar 

  8. K. Fried, U. Bongenhielm, F. M. Boissonade, and P. P. Robinson, “Nerve injury-induced pain in the trigeminal system,” Neuroscientist, 7, No. 2, 155–165 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. M. S. Ramer, S. W. N. Thomson, and S. B. McMahon, “Causes and consequences of sympathetic basket formation in dorsal root ganglia,” Pain, 6, 111–120 (1999).

    Article  Google Scholar 

  10. E. M. McLachlan, W. Janig, M. Devor, and M. Michaelis, “Peripheral nerve injury triggers noradrenergic sprout within dorsal root ganglia,” Nature, 363, No. 6429, 543–546 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. Y. Xie, J. Zhang, M. Petersen, and R. H. Lamotte, “Functional changes in dorsal root ganglion cells after chronic nerve constriction in the rat,” J. Neurophysiol., 73, No. 5, 1811–1820 (1995).

    PubMed  CAS  Google Scholar 

  12. J. Sato and E. R. Perl, “Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury,” Science, 251, No. 5001, 1608–1610 (1991).

    Article  Google Scholar 

  13. C. Cabanes, López de Armentia M. F. Viana, and C. Belmonte, “Postnatal changes in membrane properties of mice trigeminal ganglion neurons,” J. Neurophysiol., 87, No. 5, 2398–2407 (2002).

    PubMed  Google Scholar 

  14. F. Brocard, D. Verdier, I. Arsenault, et al., “Emergence of intrinsic bursting in trigeminal sensory neurons parallels the acquisition of mastication in weanling rats,” J. Neurophysiol., 96, 2410–2424 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. R. Amir, M. Michaelis, and M. Devor, “Burst discharge in primary sensory neurons: triggered by subthreshold oscillations, maintained by depolarizing afterpotentials,” J. Neurosci., 22, No. 3, 1187–1198 (2002).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tel’ka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tel’ka, M.V., Rykhal’skii, O.V. & Veselovskii, N.S. Electrophysiological Properties of Cultured Neurons of the Rat Trigeminal Ganglion. Neurophysiology 45, 84–88 (2013). https://doi.org/10.1007/s11062-013-9340-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-013-9340-2

Keywords

Navigation