Skip to main content

Advertisement

Log in

Intraoperative MRI for Brain Tumors

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

The use of intraoperative imaging has been a critical tool in the neurosurgeon’s armamentarium and is of particular benefit during tumor surgery. This article summarizes the history of its development, implementation, clinical experience and future directions.

Methods

We reviewed the literature focusing on the development and clinical experience with intraoperative MRI. Utilizing the authors’ personal experience as well as evidence from the literature, we present an overview of the utility of MRI during neurosurgery.

Results

In the 1990s, the first description of using a low field MRI in the operating room was published describing the additional benefit provided by improved resolution of MRI as compared to ultrasound. Since then, implementation has varied in magnetic field strength and in configuration from floor mounted to ceiling mounted units as well as those that are accessible to the operating room for use during surgery and via an outpatient entrance to use for diagnostic imaging. The experience shows utility of this technique for increasing extent of resection for low and high grade tumors as well as preventing injury to important structures while incorporating techniques such as intraoperative monitoring.

Conclusion

This article reviews the history of intraoperative MRI and presents a review of the literature revealing the successful implementation of this technology and benefits noted for the patient and the surgeon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Black PM et al (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41(4):831–842 discussion 842-5

    Article  CAS  PubMed  Google Scholar 

  2. Mislow JM, Golby AJ, Black PM (2010) Origins of intraoperative MRI. Magn Reson Imaging Clin N Am 18(1):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schulder M, Catrambone J, Carmel PW (2005) Intraoperative magnetic resonance imaging at 0.12 T: is it enough? Neurosurg Clin N Am 16(1):143–154

    Article  PubMed  Google Scholar 

  4. Fahlbusch R, Samii A (2016) Intraoperative MRI. Neurosurg Focus 40(3):E3

    Article  PubMed  Google Scholar 

  5. Alexander E 3rd et al (1997) The present and future role of intraoperative MRI in neurosurgical procedures. Stereotact Funct Neurosurg 68(1–4 Pt 1):10–17

    Article  PubMed  Google Scholar 

  6. Bisdas S et al (2015) Intraoperative MR imaging in neurosurgery. Clin Neuroradiol 25(Suppl 2):237–244

    Article  PubMed  Google Scholar 

  7. Dietrich J et al (1999) Brain tumor resections in an open 0.5-T MRT. 2 years’ experiences from the neuroradiological viewpoint. Radiologe 39(11):988–994

    Article  CAS  PubMed  Google Scholar 

  8. Hlavac M, Wirtz CR, Halatsch ME (2017) Intraoperative magnetic resonance imaging. HNO 65(1):25–29

    Article  CAS  PubMed  Google Scholar 

  9. Nimsky C, Carl B (2017) Historical, current, and future intraoperative imaging modalities. Neurosurg Clin N Am 28(4):453–464

    Article  PubMed  Google Scholar 

  10. Hushek SG et al (2008) MR systems for MRI-guided interventions. J Magn Reson Imaging 27(2):253–266

    Article  PubMed  Google Scholar 

  11. Gerlach R et al (2008) Feasibility of Polestar N20, an ultra-low-field intraoperative magnetic resonance imaging system in resection control of pituitary macroadenomas: lessons learned from the first 40 cases. Neurosurgery 63(2):272–284 discussion 284-5

    Article  PubMed  Google Scholar 

  12. Kubben PL et al (2014) Intraoperative magnetic resonance imaging versus standard neuronavigation for the neurosurgical treatment of glioblastoma: a randomized controlled trial. Surg Neurol Int 5:70

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mutchnick I, Moriarty TM (2014) Intraoperative MRI in pediatric neurosurgery-an update. Transl Pediatr 3(3):236–246

    PubMed  PubMed Central  Google Scholar 

  14. Fahlbusch R (2011) Development of intraoperative MRI: a personal journey. Acta Neurochir Suppl 109:9–16

    Article  PubMed  Google Scholar 

  15. Chicoine MR et al (2011) Implementation and preliminary clinical experience with the use of ceiling mounted mobile high field intraoperative magnetic resonance imaging between two operating rooms. Acta Neurochir Suppl 109:97–102

    Article  PubMed  Google Scholar 

  16. Choudhri AF et al (2015) Intraoperative MRI in pediatric brain tumors. Pediatr Radiol 45(Suppl 3):S397–S405

    Article  PubMed  Google Scholar 

  17. Bohinski RJ et al (2001) Glioma resection in a shared-resource magnetic resonance operating room after optimal image-guided frameless stereotactic resection. Neurosurgery 48(4):731–742 discussion 742-4

    Article  CAS  PubMed  Google Scholar 

  18. Jolesz FA (2011) Intraoperative imaging in neurosurgery: where will the future take us? Acta Neurochir Suppl 109:21–25

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lippmann H, Kruggel F (2005) Quasi-real-time neurosurgery support by MRI processing via grid computing. Neurosurg Clin N Am 16(1):65–75

    Article  PubMed  Google Scholar 

  20. Elias WJ, Fu KM, Frysinger RC (2007) Cortical and subcortical brain shift during stereotactic procedures. J Neurosurg 107(5):983–988

    Article  PubMed  Google Scholar 

  21. Nimsky C et al (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47(5):1070–1079 discussion 1079-80

    Article  CAS  PubMed  Google Scholar 

  22. Nabavi A et al (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48(4):787–797 discussion 797-8

    CAS  PubMed  Google Scholar 

  23. Shahar T et al (2014) Preoperative imaging to predict intraoperative changes in tumor-to-corticospinal tract distance: an analysis of 45 cases using high-field intraoperative magnetic resonance imaging. Neurosurgery 75(1):23–30

    Article  PubMed  Google Scholar 

  24. Gering DT et al (2001) An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 13(6):967–975

    Article  CAS  PubMed  Google Scholar 

  25. Nauta HJ (1994) Error assessment during “image guided” and “imaging interactive” stereotactic surgery. Comput Med Imaging Graph 18(4):279–287

    Article  CAS  PubMed  Google Scholar 

  26. Dho YS et al (2019) Positional effect of preoperative neuronavigational magnetic resonance image on accuracy of posterior fossa lesion localization. J Neurosurg:1–10

  27. Lacroix M et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198

    Article  CAS  PubMed  Google Scholar 

  28. Sanai N et al (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115(1):3–8

    Article  PubMed  Google Scholar 

  29. Oppenlander ME et al (2014) An extent of resection threshold for recurrent glioblastoma and its risk for neurological morbidity. J Neurosurg 120(4):846–853

    Article  PubMed  Google Scholar 

  30. Scherer M et al (2019) Surgery for diffuse WHO grade II Gliomas: volumetric analysis of a Multicenter retrospective cohort from the German study Group for Intraoperative Magnetic Resonance Imaging. Neurosurgery

  31. Roelz R et al (2016) Residual tumor volume as best outcome predictor in low grade Glioma - a nine-years near-randomized survey of surgery vs. Biopsy Sci Rep 6:32286

    Article  CAS  PubMed  Google Scholar 

  32. Krivosheya D, Prabhu SS (2017) Combining functional studies with intraoperative MRI in Glioma surgery. Neurosurg Clin N Am 28(4):487–497

    Article  PubMed  Google Scholar 

  33. Rao G (2017) Intraoperative MRI and maximizing extent of resection. Neurosurg Clin N Am 28(4):477–485

    Article  PubMed  Google Scholar 

  34. Aghi MK et al (2015) The role of surgery in the management of patients with diffuse low grade glioma: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol 125(3):503–530

    Article  Google Scholar 

  35. Hervey-Jumper SL, Berger MS (2016) Maximizing safe resection of low- and high-grade glioma. J Neuro-Oncol 130(2):269–282

    Article  Google Scholar 

  36. Hatiboglu MA et al (2009) Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: a prospective volumetric analysis. Neurosurgery 64(6):1073–1081 discussion 1081

    Article  PubMed  Google Scholar 

  37. Coburger J et al (2015) Linear array ultrasound in low-grade glioma surgery: histology-based assessment of accuracy in comparison to conventional intraoperative ultrasound and intraoperative MRI. Acta Neurochir 157(2):195–206

    Article  PubMed  Google Scholar 

  38. Giordano M et al (2017) Intraoperative magnetic resonance imaging in pediatric neurosurgery: safety and utility. J Neurosurg Pediatr 19(1):77–84

    Article  PubMed  Google Scholar 

  39. Napolitano M et al (2014) Glioblastoma surgery with and without intraoperative MRI at 3.0T. Neurochirurgie 60(4):143–150

    Article  CAS  PubMed  Google Scholar 

  40. Knauth M et al (1999) Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas. AJNR Am J Neuroradiol 20(9):1642–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Senft C et al (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12(11):997–1003

    Article  PubMed  Google Scholar 

  42. Senft C et al (2010) Low field intraoperative MRI-guided surgery of gliomas: a single center experience. Clin Neurol Neurosurg 112(3):237–243

    Article  PubMed  Google Scholar 

  43. Zhang Z et al (2019) High-field intraoperative magnetic resonance imaging increases extent of resection and progression-free survival for nonfunctioning pituitary adenomas. World Neurosurg 127:e925–e931

    Article  PubMed  Google Scholar 

  44. Golub D et al (2020) Intraoperative MRI versus 5-ALA in high-grade glioma resection: a network meta-analysis. J Neurosurg:1–15

  45. Masuda Y et al (2018) Evaluation of the extent of resection and detection of ischemic lesions with intraoperative MRI in glioma surgery: is intraoperative MRI superior to early postoperative MRI? J Neurosurg:1–8

  46. Sakurada K et al (2010) Detection of acute subdural hemorrhage using intraoperative MR imaging during glioma surgery: a case report. No Shinkei Geka 38(12):1115–1120

    PubMed  Google Scholar 

  47. Cui Z et al (2019) Early detection of cerebral ischemic events on intraoperative magnetic resonance imaging during surgical procedures for deep brain stimulation. Acta Neurochir 161(8):1545–1558

    Article  PubMed  Google Scholar 

  48. Keles GE (2004) Intracranial neuronavigation with intraoperative magnetic resonance imaging. Curr Opin Neurol 17(4):497–500

    Article  PubMed  Google Scholar 

  49. Lewin JS, Metzger A, Selman WR (2000) Intraoperative magnetic resonance image guidance in neurosurgery. J Magn Reson Imaging 12(4):512–524

    Article  CAS  PubMed  Google Scholar 

  50. Yahanda AT et al (2020) A multi-institutional analysis of factors influencing surgical outcomes for patients with newly diagnosed grade I Gliomas. World Neurosurg 135:e754–e764

    Article  PubMed  Google Scholar 

  51. Li YM et al (2016) The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg 124(4):977–988

    Article  PubMed  Google Scholar 

  52. Coburger J et al (2016) Low-grade Glioma surgery in intraoperative magnetic resonance imaging: results of a Multicenter retrospective assessment of the German study Group for Intraoperative Magnetic Resonance Imaging. Neurosurgery 78(6):775–786

    Article  PubMed  Google Scholar 

  53. Rahman M et al (2017) The effects of new or worsened postoperative neurological deficits on survival of patients with glioblastoma. J Neurosurg 127(1):123–131

    Article  PubMed  Google Scholar 

  54. McGirt MJ et al (2009) Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 65(3):463–469 discussion 469-70

    Article  PubMed  Google Scholar 

  55. Hall WA et al (2003) Costs and benefits of intraoperative MR-guided brain tumor resection. Acta Neurochir Suppl 85:137–142

    Article  CAS  PubMed  Google Scholar 

  56. Pichierri A, Bradley M, Iyer V (2019) Intraoperative magnetic resonance imaging-guided Glioma resections in awake or asleep settings and feasibility in the context of a public health system. World Neurosurg X 3:100022

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pollack IF, Agnihotri S, Broniscer A (2019) Childhood brain tumors: current management, biological insights, and future directions. J Neurosurg Pediatr 23(3):261–273

    Article  PubMed  PubMed Central  Google Scholar 

  58. Day EL, Scott RM (2019) The utility of intraoperative MRI during pediatric brain tumor surgery: a single-surgeon case series. J Neurosurg Pediatr:1–7

  59. Karsy M et al (2019) Evaluation of pediatric glioma outcomes using intraoperative MRI: a multicenter cohort study. J Neuro-Oncol 143(2):271–280

    Article  Google Scholar 

  60. Giordano M et al (2016) Neurosurgical tools to extend tumor resection in pediatric hemispheric low-grade gliomas: iMRI. Childs Nerv Syst 32(10):1915–1922

    Article  PubMed  Google Scholar 

  61. Shah MN et al (2012) Intraoperative magnetic resonance imaging to reduce the rate of early reoperation for lesion resection in pediatric neurosurgery. J Neurosurg Pediatr 9(3):259–264

    Article  PubMed  Google Scholar 

  62. Lara-Almunia M, Hernandez-Vicente J (2019) Frame-based stereotactic biopsy: description and Association of Anatomical, radiologic, and surgical variables with diagnostic yield in a series of 407 cases. J Neurol Surg A Cent Eur Neurosurg 80(3):149–161

    Article  PubMed  Google Scholar 

  63. Chen CC et al (2009) Stereotactic brain biopsy: single center retrospective analysis of complications. Clin Neurol Neurosurg 111(10):835–839

    Article  PubMed  Google Scholar 

  64. Silva EU et al (2009) Stereotactic biopsy for intracranial lesions: clinical-pathological compatibility in 60 patients. Arq Neuropsiquiatr 67(4):1062–1065

    Article  PubMed  Google Scholar 

  65. Ersahin M et al (2011) The safety and diagnostic value of frame-based and CT-guided stereotactic brain biopsy technique. Turk Neurosurg 21(4):582–590

    PubMed  Google Scholar 

  66. Bernays RL et al (2002) Histological yield, complications, and technological considerations in 114 consecutive frameless stereotactic biopsy procedures aided by open intraoperative magnetic resonance imaging. J Neurosurg 97(2):354–362

    Article  PubMed  Google Scholar 

  67. Kucharczyk J et al (2001) Cost-efficacy of MR-guided neurointerventions. Neuroimaging Clin N Am 11(4):767–772 xii

    CAS  PubMed  Google Scholar 

  68. Chakraborty S et al (2017) Intraoperative MRI for resection of intracranial meningiomas. J Exp Ther Oncol 12(2):157–162

    PubMed  Google Scholar 

  69. Zaidi HA et al (2016) The utility of high-resolution intraoperative MRI in endoscopic transsphenoidal surgery for pituitary macroadenomas: early experience in the advanced multimodality image guided operating suite. Neurosurg Focus 40(3):E18

    Article  PubMed  PubMed Central  Google Scholar 

  70. Coburger J et al (2014) Determining the utility of intraoperative magnetic resonance imaging for transsphenoidal surgery: a retrospective study. J Neurosurg 120(2):346–356

    Article  PubMed  Google Scholar 

  71. Hlavac M et al (2019) Intraoperative MRI in transsphenoidal resection of invasive pituitary macroadenomas. Neurosurg Rev 42(3):737–743

    Article  PubMed  Google Scholar 

  72. Sylvester PT et al (2015) Combined high-field intraoperative magnetic resonance imaging and endoscopy increase extent of resection and progression-free survival for pituitary adenomas. Pituitary 18(1):72–85

    Article  PubMed  PubMed Central  Google Scholar 

  73. Thomas JG et al (2016) Laser interstitial thermal therapy for newly diagnosed and recurrent glioblastoma. Neurosurg Focus 41(4):E12

    Article  PubMed  Google Scholar 

  74. Swartz LK et al (2019) Outcomes in patients treated with laser interstitial thermal therapy for primary brain Cancer and brain metastases. Oncologist

  75. Ali FS et al (2019) Cerebral radiation necrosis: incidence, pathogenesis, diagnostic challenges, and future opportunities. Curr Oncol Rep 21(8):66

    Article  PubMed  CAS  Google Scholar 

  76. Mohyeldin A, Elder JB (2017) Stereotactic biopsy platforms with intraoperative imaging guidance. Neurosurg Clin N Am 28(4):465–475

    Article  PubMed  Google Scholar 

  77. Bartek J Jr et al (2019) Biopsy and ablation of H3K27 Glioma using skull-mounted Smartframe device: technical case report. World Neurosurg 127:436–441

    Article  PubMed  Google Scholar 

  78. Pruitt R et al (2017) Complication avoidance in laser interstitial thermal therapy: lessons learned. J Neurosurg 126(4):1238–1245

    Article  PubMed  Google Scholar 

  79. Salem U et al (2019) Neurosurgical applications of MRI guided laser interstitial thermal therapy (LITT). Cancer Imaging 19(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hatiboglu MA et al (2010) Utilization of intraoperative motor mapping in glioma surgery with high-field intraoperative magnetic resonance imaging. Stereotact Funct Neurosurg 88(6):345–352

    Article  PubMed  Google Scholar 

  81. Maldaun MV et al (2014) Awake craniotomy for gliomas in a high-field intraoperative magnetic resonance imaging suite: analysis of 42 cases. J Neurosurg 121(4):810–817

    Article  PubMed  Google Scholar 

  82. Leuthardt EC et al (2011) Use of movable high-field-strength intraoperative magnetic resonance imaging with awake craniotomies for resection of gliomas: preliminary experience. Neurosurgery 69(1):194–205 discussion 205-6

    Article  PubMed  Google Scholar 

  83. Coburger J et al (2015) Surgery for Glioblastoma: impact of the combined use of 5-Aminolevulinic acid and intraoperative MRI on extent of resection and survival. PLoS One 10(6):e0131872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Coburger J, Wirtz CR (2019) Fluorescence guided surgery by 5-ALA and intraoperative MRI in high grade glioma: a systematic review. J Neuro-Oncol 141(3):533–546

    Article  CAS  Google Scholar 

  85. Barone DG, Lawrie TA, Hart MG (2014) Image guided surgery for the resection of brain tumours. Cochrane Database Syst Rev 1:CD009685

    Google Scholar 

  86. Berkow LC (2016) Anesthetic management and human factors in the intraoperative MRI environment. Curr Opin Anaesthesiol 29(5):563–567

    Article  CAS  PubMed  Google Scholar 

  87. Lu CY et al (2018) Clinical application of 3.0 T intraoperative magnetic resonance combined with multimodal neuronavigation in resection of cerebral eloquent area glioma. Medicine (Baltimore) 97(34):e11702

    Article  Google Scholar 

  88. Masuda Y et al (2018) Evaluation of the extent of resection and detection of ischemic lesions with intraoperative MRI in glioma surgery: is intraoperative MRI superior to early postoperative MRI? J Neurosurg 131(1):209–216

    Article  PubMed  Google Scholar 

  89. Makary M et al (2011) Clinical and economic outcomes of low-field intraoperative MRI-guided tumor resection neurosurgery. J Magn Reson Imaging 34(5):1022–1030

    Article  PubMed  Google Scholar 

  90. Kubben PL et al (2012) Correlation between contrast enhancement on intraoperative magnetic resonance imaging and histopathology in glioblastoma. Surg Neurol Int 3:158

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cherkashin MA et al (2016) Surgical safety cheklist at the management of the hybrid operating room. Angiol Sosud Khir 22(2):54–59

    CAS  PubMed  Google Scholar 

  92. Iturri-Clavero F et al (2016) “Low-field” intraoperative MRI: a new scenario, a new adaptation. Clin Radiol 71(11):1193–1198

    Article  CAS  PubMed  Google Scholar 

  93. Henrichs B, Walsh RP (2014) Intraoperative MRI for neurosurgical and general surgical interventions. Curr Opin Anaesthesiol 27(4):448–452

    Article  PubMed  Google Scholar 

  94. Board, A. WSJ: Intraoperative imaging gaining traction. February 19, 2015 18, 2020]; Available from: https://www.advisory.com/daily-briefing/2015/02/19/intraoperative%20imaging

  95. RL, B (2010) Intraoperative Imaging: Current Trends, Technology, and Future Directions, in Transsphenoidal Surgery, G.L. ER Laws, (Ed). p. 56–69

  96. Database, A.A.S. (2016) Percentage of Hospitals with Access to Intraoperative Magnetic Resonance Imaging. 2016 September 18. 2020]; Available from: https://www.neimanhpi.org/data_series/percentage-of-hospitals-with-access-to-intraoperative-magnetic-resonance-imaging/#/map/2016

  97. PubMed. 2020 9/22/2020]; Available from: https://pubmed.ncbi.nlm.nih.gov/?term=intraoperative+mri+and+brain+tumors

  98. Jenkinson MD et al (2018) Intraoperative imaging technology to maximise extent of resection for glioma. Cochrane Database Syst Rev 1:CD012788

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Weinberg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, C.M., Jones, P.S. & Weinberg, J.S. Intraoperative MRI for Brain Tumors. J Neurooncol 151, 479–490 (2021). https://doi.org/10.1007/s11060-020-03667-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03667-6

Keywords

Navigation